

## Canadian Gas Technician - Learning Module 16

## **Water Heaters**

Comprehensive training on gas water heating systems, installation, maintenance, and troubleshooting according to CSA B149.1 standards

## INSTALLA GAS WATER HEATER

#### **Chapter 16**

## **Water Heaters**

Water heating represents the second-largest energy use in most homes, accounting for 15-25% of total energy consumption. Gas water heaters provide reliable, cost-effective hot water for residential, commercial, and industrial applications. Understanding their design, installation, and maintenance is essential for gas technicians.

## **Learning Objectives**

Upon completion of this chapter, you will be able to:

| 01                                                               | 02                                                                      |                  | 03                                                                            |
|------------------------------------------------------------------|-------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------|
| Identify different types of water heaters and their applications | Understand the components and operation of various water heater systems |                  | Install water heaters according to CSA B149.1 and manufacturer specifications |
| 04                                                               |                                                                         | 05               |                                                                               |
| Calculate proper water heater sizing and usage patterns          | g based on demand                                                       | Configure tankle | ess water heaters for optimal performance                                     |

## **Learning Objectives (continued)**

| 01                                                               | 02                                 |                                                             | 03                                                       |
|------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------|----------------------------------------------------------|
| Install and test temperature and pressure relief valves properly | Perform routine mater heating syst |                                                             | Troubleshoot common water heater problems systematically |
| 04                                                               |                                    | 05                                                          |                                                          |
| Apply code requirements for safe water heater installation       |                                    | Educate customers on water heater operation and maintenance |                                                          |

## **Introduction to Water Heating Technology**

This chapter covers the full spectrum of gas water heating technology, from traditional atmospheric tank heaters to modern condensing tankless units. We'll explore:

## Various water heater types and their applications

Understanding the differences between atmospheric, power vent, direct vent, tankless, and condensing systems

## **Critical components and their functions**

Detailed examination of tanks, anodes, valves, controls, and safety devices

## Code-compliant installation procedures

Following CSA B149.1 requirements for safe and proper installation

## **Introduction (continued)**

#### **Proper sizing methodologies**

Calculating capacity based on demand, recovery rates, and usage patterns

#### Maintenance requirements

Regular inspection, testing, and service procedures to ensure longevity

## Systematic troubleshooting approaches

Diagnosing and resolving common problems efficiently and safely

Water heater technology continues evolving with efficiency improvements, smart controls, and hybrid designs. However, fundamental principles of safe gas combustion, proper venting, and temperature/pressure safety remain constant.

# 16.1 Water Heater Types **Atmospheric Storage Tank**

**Operating Principle:** Atmospheric water heaters use natural draft for venting, relying on the buoyancy of hot combustion gases to create draft through the vent system.



## **Atmospheric Storage Tank**

#### **Construction Features**

- Glass-lined steel tank (30-80 gallons residential)
- Central flue tube through tank
- Natural draft hood
- Standing pilot or electronic ignition
- Bottom-fired burner
- Efficiency: 60-80% AFUE

#### Components

- 1. Tank Assembly
- Welded steel construction
- Glass lining (porcelain enamel)
- Foam insulation (R-8 to R-16)
- Outer jacket

## **Atmospheric Storage Tank Components**

#### **Combustion System**

- Atmospheric burner
- Pilot assembly (thermocouple)
- Main burner orifice
- Burner chamber

#### **Venting System**

- Draft hood
- B-vent connector
- Natural draft operation

#### **Typical Specifications**

**Capacity:** 30, 40, 50, 60, 75 gallons

Input: 30,000-75,000 BTU/h
Recovery: 30-41 gallons/hour
First Hour Rating: 60-90 gallons

Efficiency: 60-62% (standard), 76-80% (ENERGY STAR)

## **Atmospheric Storage Tank**

#### **Advantages**

- Lower initial cost
- Simple operation
- No electricity required (pilot models)
- Reliable and proven technology
- Easy to service

#### **Disadvantages**

- Lower efficiency
- Requires vertical venting
- Susceptible to backdrafting
- Higher standby losses
- Limited installation locations

## **Power Vent Storage Tank**

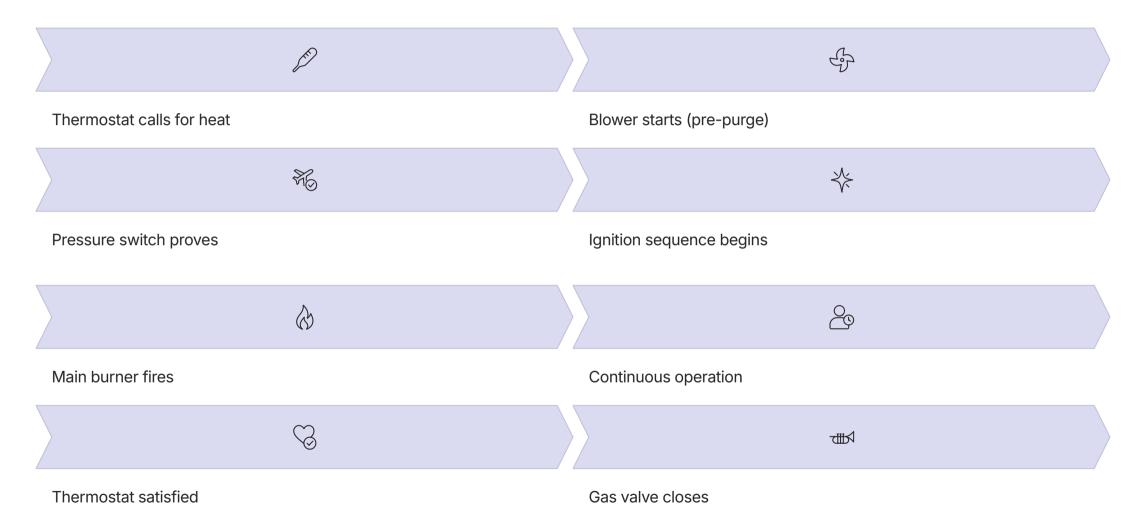
**Operating Principle:** Power vent water heaters use an electric blower to exhaust combustion products, allowing horizontal venting and longer vent runs.

#### **Construction Features**

- Similar tank construction to atmospheric
- Blower assembly on top
- Pressure switch safety
- Horizontal venting capability
- Electronic ignition typical
- Efficiency: 62-82% AFUE



## **Power Vent Venting System**


#### 1. Blower Assembly

- Centrifugal fan
- 30-150 CFM typical
- Pre-purge and post-purge
- Sealed combustion chamber

#### 2. Vent Materials

- PVC/CPVC approved
- ABS in some applications
- Maximum temperatures considered

## **Power Vent Control Sequence**



**Final Steps:** Post-purge (30-60 seconds), then blower stops

## **Power Vent Storage Tank**

#### **Advantages**

- Flexible venting options
- Longer vent runs possible
- Reduced backdraft risk
- Can vent through sidewall
- Better for tight homes

#### **Disadvantages**

- Requires electricity
- More complex controls
- Blower noise
- Higher initial cost
- No operation during power outage

## **Direct Vent Storage Tank**

**Operating Principle:** Direct vent water heaters draw combustion air from outside through a sealed system, eliminating indoor air consumption.

#### **Construction Features**

- Sealed combustion chamber
- Concentric or dual-pipe venting
- No indoor air required
- Power vented or natural draft
- Higher efficiency potential

## **Direct Vent Venting Configurations**

#### **Concentric Venting**

- Pipe within pipe design
- Exhaust in center
- Intake in outer annulus
- Single wall penetration
- Preheats combustion air

#### **Dual-Pipe System**

- Separate intake and exhaust
- More flexible routing
- Two wall penetrations
- Various termination options

#### **Direct Vent Installation Benefits**



No impact on indoor air quality



Ideal for tight construction



Reduced clearances possible



**Consistent combustion air** temperature



Zone 3 (bedroom) installation allowed

#### **Typical Applications**

Mobile homes, tight/efficient homes, confined space installations, cold climate applications, where indoor air quality critical

## **Tankless (Instantaneous)**

**Operating Principle:** Tankless water heaters heat water on-demand as it flows through the unit, eliminating standby losses.

#### **Types**

#### **Non-Condensing Tankless:**

- Efficiency: 80-85%
- Stainless steel heat exchanger
- Higher exhaust temperatures
- Category III venting



#### **Tankless Water Heaters**

#### **Condensing Tankless**

- Efficiency: 90-98%
- Secondary heat exchanger
- Recovers latent heat
- PVC venting possible
- · Condensate management required

#### **Key Components**

#### 1. Heat Exchanger

- · Copper or stainless steel
- Finned tube design
- High surface area
- Corrosion resistant

#### 2. Modulating System

- Variable gas valve
- Modulating burner
- 5:1 to 15:1 turndown
- Precise temperature control

#### 3. Flow Sensors

- Turbine or paddle wheel
- 0.5-0.75 GPM activation
- Digital flow measurement
- Leak detection capability

#### 4. Control Board

- Microprocessor controlled
- Multiple safety circuits
- Diagnostic capabilities
- Remote control options

## **Tankless Performance Specifications**

Flow Rate: 3-11 GPM

Input: 120,000-199,900 BTU/h

Temperature Rise:

- 35°F at 7 GPM

- 45°F at 5 GPM

- 70°F at 3 GPM

Minimum Flow: 0.5 GPM

Maximum Pressure: 150 PSI

#### **Advantages**

- Endless hot water
- Space saving
- No standby losses
- Longer equipment life (20+ years)
- Precise temperature control

#### **Disadvantages**

- Higher initial cost
- Complex installation
- Minimum flow requirements
- Cold water sandwich effect
- Higher gas demand

## **Condensing Storage**

**Operating Principle:** Condensing storage water heaters achieve high efficiency by extracting latent heat from combustion gases, similar to condensing furnaces.

#### **Design Features**

90-98% thermal efficiency

Secondary heat exchanger

PVC venting capability

Modulating burner (some models)

Advanced controls

## **Condensing Storage Construction**

#### 1. Primary Heat Exchanger

- Submerged in tank
- Spiral or helical design
- Maximum surface area

#### 2. Secondary Heat Exchanger

- Captures latent heat
- Condensate production
- Corrosion-resistant materials

#### 3. Condensate Management

- Collection tray
- Neutralization (if required)
- Proper drainage

#### **Efficiency Features**

Low stack temperatures (100-140°F), reduced cycling losses, better stratification, smart controls, heat pump hybrid options

#### **Applications**

High-use residential, light commercial, energy-conscious installations, where gas savings justify cost

#### **Commercial Water Heaters**

#### **Types and Features**



#### **Power Burner Storage**

- 75-100 gallon capacity
- 75,000-500,000 BTU/h input
- Forced combustion air
- Higher recovery rates
- Modulating options available



#### **Copper-Fin Tube Heaters**

- Fast recovery
- 100-500,000 BTU/h
- Multiple pass design
- 80-88% efficiency
- Compact footprint



#### **Condensing Commercial**

- 95-98% efficiency
- 100,000-2,000,000 BTU/h
- Stainless steel construction
- Modulating operation
- Advanced controls

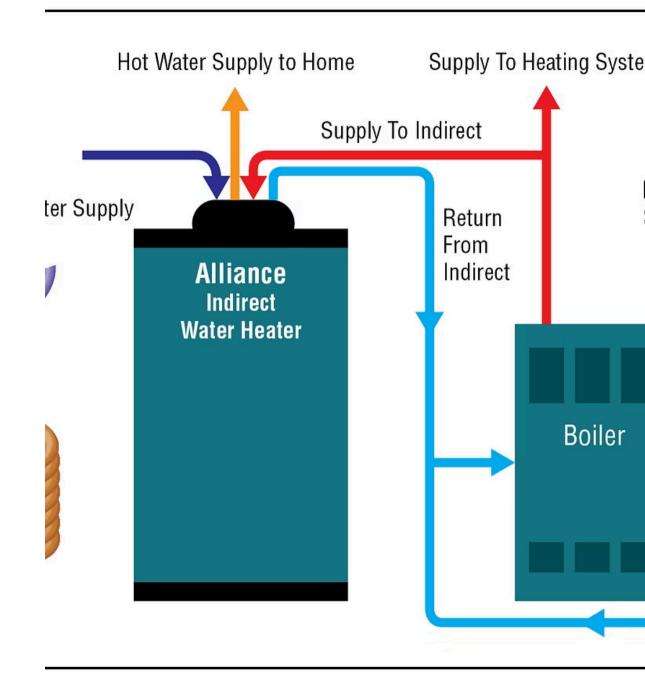
#### **Commercial Water Heaters**

#### **Installation Requirements**

- Dedicated combustion air
- Larger gas connections (1"-2")
- Multiple unit manifolds
- Building automation interface
- Seismic bracing (zones)

#### **Control Features**

- Lead-lag operation
- Outdoor reset capability
- Building management interface
- Remote monitoring
- Predictive maintenance


#### **Indirect Water Heaters**

**Operating Principle:** Indirect water heaters use boiler water to heat domestic water through a heat exchanger, eliminating direct flame contact.

#### **Types**

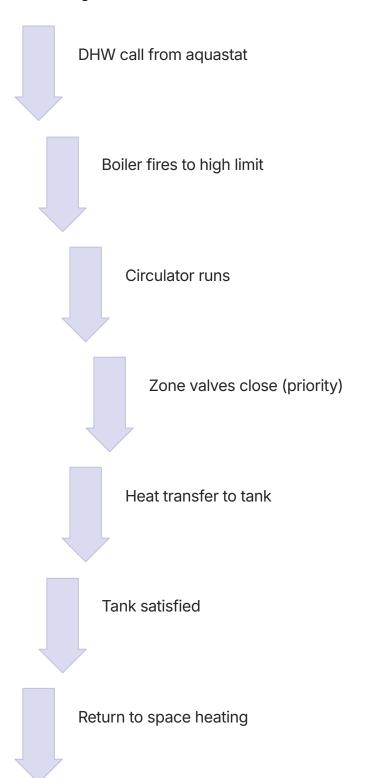
**Tank-in-Tank Design:** Inner domestic water tank, outer boiler water jacket, large heat transfer area, natural convection

**Internal Coil Design:** Coiled heat exchanger, immersed in domestic water, forced circulation typical, compact design



#### **Indirect Water Heaters**

#### **External Heat Exchanger**


Plate or shell-tube, separate from storage tank, high heat transfer rates, complex piping

#### **System Components**

- 1. Storage tank (30-119 gallons)
- 2. Heat exchanger
- 3. Circulator pump
- 4. Aquastat control
- 5. Check valve
- 6. Mixing valve (optional)

## **Indirect Water Heater Control Strategy**

#### **Priority Control**



#### **Indirect Water Heaters**

#### **Advantages**

- High recovery rates
- Long tank life (no flame)
- Reduced maintenance
- Combined system efficiency
- No separate venting

#### **Disadvantages**

- Requires boiler operation
- Summer boiler cycling
- Complex controls
- Higher initial cost
- Space requirements

Section 16.2

## **Water Heater Components**

Understanding the critical components that make up a water heater system is essential for proper installation, maintenance, and troubleshooting.

#### **Tank Construction**

#### **Materials and Design**



#### **Steel Tank**

- Carbon steel construction
- 0.25-0.375" thickness
- Welded seams
- Pressure tested to 300 PSI
- Working pressure: 150 PSI



#### **Glass Lining**

- Porcelain enamel coating
- Applied at 1500°F
- Multiple coats
- Prevents corrosion
- Thermal shock resistant

## **Tank Construction (continued)**



#### Insulation

- Polyurethane foam
- R-8 to R-24 values
- 2-3" thickness typical
- CFC-free formulation
- Reduces standby losses



#### **Outer Jacket**

- Baked enamel finish
- Corrosion protection
- Aesthetic appearance
- Access panels

#### **Tank Connections**

Standard Residential Tank:

- Cold inlet: 3/4" NPT (top)
- Hot outlet: 3/4" NPT (top)
- Drain valve: 3/4" garden hose
- T&P valve: 3/4" NPT
- Gas connection: 1/2" NPT

#### **Anode Rods**

**Purpose:** Sacrificial anode rods protect the tank from corrosion through galvanic action.

#### **Types**



#### **Magnesium Anode**

- Most common
- Standard protection
- 3-5 year life typical
- Best for soft water

#### D

#### **Aluminum Anode**

- Lighter weight
- Reduces odor issues
- Longer life
- Better for hard water



#### **Zinc/Aluminum Alloy**

- Reduces sulfur odors
- Antibacterial properties
- Premium option
- 5-7 year life

Ø

#### **Powered Anode**

- Impressed current system
- Non-sacrificial
- Permanent installation
- Requires power supply

### **Anode Rod Inspection and Replacement**

#### **Inspection Frequency**

- Year 1: Initial check
- Years 2-5: Annual inspection
- Years 5+: Every 6 months

#### **Replacement Indicators**

- 75% consumed
- Heavy calcium deposits
- Exposed steel core wire
- Tank age over 5 years

#### **Installation Tips**

- 1. Use Teflon tape on threads
- 2. Don't overtighten
- 3. May need to bend for clearance
- 4. Check headroom before removal
- 5. Consider flexible anode

## **Dip Tubes**

Function: Delivers cold water to tank bottom, promoting stratification and preventing mixing.

#### Construction

- Polypropylene typical
- Heat-resistant plastic
- 3/4" diameter
- Anti-siphon hole at top

#### **Types**

#### **Standard Dip Tube**

Straight pipe, 6" from tank bottom, basic design

#### **Curved Dip Tube**

Creates swirl action, self-cleaning effect, reduces sediment

#### **Diffuser Dip Tube**

Perforated bottom, spreads incoming water, reduces turbulence

## **Dip Tubes (continued)**

#### **Common Problems**

- Deterioration (1993-1997 issue)
- Breakage from thermal shock
- Sediment blockage
- Incorrect length

Reinstall nipple

#### **Replacement Procedure**

| 01                     | 02                    | 03                       |
|------------------------|-----------------------|--------------------------|
| Turn off water and gas | Drain several gallons | Remove cold inlet nipple |
| 04                     | 05                    | 06                       |
| Extract old dip tube   | Insert new tube       | Verify proper length     |
| 07                     |                       |                          |

## **Temperature and Pressure Relief Valves**

Purpose: Safety device preventing tank rupture from excess temperature or pressure.

#### **Operating Parameters**

150

**PSI** 

Pressure relief setting

Combined T&P most common

#### Construction

- Bronze body typical
- Stainless steel spring
- Thermostat probe
- Test lever
- Discharge connection

210

°F

Temperature relief setting

■ Note: Detailed coverage in Section 16.6

# **Temperature and Pressure Relief Valve Operation**

#### 1. Pressure Relief

- Spring-loaded disc
- Opens at 150 PSI
- Full flow capacity

### 2. Temperature Relief

- Thermal element
- Expands at 210°F
- Opens valve mechanically

# **Gas Control Valves Types**

#### **Mechanical (Millivolt)**

- Thermocouple powered
- No external power needed
- Simple operation
- Standing pilot

### **Electronic (Thermopile)**

- Self-powered
- Electronic ignition
- Status indicators
- Diagnostic capability

# **Gas Control Valve Components**

Main ValveRedundant solenoidsSlow-opening designSafety shutoff

2

#### **Pilot Valve**

- Thermocouple operated
- Safety function
- Manual control

3

#### **Thermostat**

- Immersion sensing
- Adjustable 90-160°F
- Differential 10-15°F

4

#### Regulator

- Maintains outlet pressure
- Compensates for inlet variation
- 3.5" W.C. typical

### **Control Settings**

Typical Residential Settings: Pilot: Continuous or intermittent, Temperature: 120°F recommended, Vacation: Pilot only, Off: Complete shutdown

### **Thermostats**

# **Mechanical Thermostats**Rod and Tube Type

- Copper tube sensing
- Invar rod inside
- Differential expansion
- Operates gas valve

#### **Bi-Metal Type**

- Two metals bonded
- Bends with temperature
- Snap-action contacts
- Simple and reliable

#### **Smart Features**

#### **Electronic Thermostats**

#### **Thermistor Sensing**

- 10K ohm typical
- Precise measurement
- Digital control
- ±1°F accuracy

#### **Microprocessor Control**

- Multiple sensors
- Learning algorithms
- Diagnostic features
- Communication capability

WiFi connectivity, usage tracking, leak detection, vacation modes, energy monitoring

# **Burner Assemblies**

# **Atmospheric Burner**

### Components

- Cast iron or steel
- Multiple ports
- Venturi mixing
- Primary air adjustment

### Operation

2

4

5

Gas flows through orifice

Venturi creates vacuum

Primary air entrained

Mixture burns at ports

Secondary air from room

## **Power Burner**

### **Components**

- Forced draft blower
- Premix design
- Stainless steel mesh
- Modulation capability

### **Advantages**



**Complete combustion** 



**Quieter operation** 



**Higher efficiency** 



**Lower emissions** 

# **Venting Components**

#### **Draft Hoods (Atmospheric)**

- Prevents backdraft
- Dilution air inlet
- Built-in or separate
- Must remain unobstructed

#### **Power Vent Components**

- Blower assembly
- Pressure switch
- Vent connector
- Termination fitting

### **Direct Vent Components**

- Concentric termination
- Intake/exhaust pipes
- Wall thimble
- Termination kit

Section 16.3

# **Water Heater Installation**

Proper installation according to CSA B149.1 and manufacturer specifications is critical for safe, efficient, and reliable water heater operation.

# **Location Requirements per Code**

### **CSA B149.1 Requirements**

#### **General Location Rules**



#### **Accessibility**

- Minimum 24" front clearance
- Service access required
- Removal path planned



#### **Floor Protection**

- Non-combustible base (concrete)
- Or listed protective material
- Garage: 18" elevation required



#### **Prohibited Locations**

- Bedrooms (except direct vent)
- Bathrooms (except direct vent)
- Clothes closets
- Under stairs (restricted)

### **Zone Classifications**

#### **Zone 1 - General Space**

- Living rooms
- Kitchens
- Hallways
- Open basements

#### Zone 2 - Restricted

- Storage rooms
- Furnace rooms
- Garages (with elevation)

#### **Zone 3 - Special Requirements**

- Bedrooms (direct vent only)
- Bathrooms (direct vent only)
- Must have sealed combustion

# **Seismic Requirements**

Zones 4 and higher: Two straps required, Upper: 1/3 from top, Lower: 1/3 from bottom, Lag bolts to studs

# **Clearances to Combustibles**

### **Atmospheric Water Heaters**

#### Standard Clearances:

- Sides: 1" minimum
- Back: 1" minimum
- Front: 6" service clearance
- Top: 12" to combustibles
- Draft hood: 6" all directions
- Vent connector: 6" (B-vent)

#### **Power Vent Units**

#### Typical Clearances:

- Sides: 2" minimum
- Back: 0" (some models)
- Front: 4" minimum
- Top: 12" to ceiling
- Vent: Per manufacturer

# **Clearances to Combustibles (continued)**

### **Direct Vent Units**

#### Reduced Clearances:

- Sides: 0" (some models)
- Back: 0" (some models)
- Front: 4" service
- Vent: Per certification

#### **Clearance Reduction**

- Use approved shields
- Maintain 1" air gap
- Sheet metal acceptable
- Follow tables in code

## **Combustion Air Provisions**

### **Natural Draft Requirements**

#### **Two-Opening Method**

Upper Opening (within 12" of ceiling):

- 1 sq.in. per 4,000 BTU/h

Lower Opening (within 12" of floor):

- 1 sq.in. per 4,000 BTU/h

Example: 40,000 BTU/h heater

Upper:  $40,000 \div 4,000 = 10 \text{ sq.in.}$ 

Lower:  $40,000 \div 4,000 = 10$  sq.in.

#### **Single-Opening Method**

#### Opening Size:

- 1 sq.in. per 3,000 BTU/h
- Within 12" of ceiling

Example: 40,000 BTU/h

 $40,000 \div 3,000 = 13.3 \text{ sq.in.}$ 

# **Combustion Air - Mechanical Ventilation**

- Engineered system
- Interlocked with appliance
- Proven before operation
- Calculation required

# **Gas Piping Connections**

# **Sizing Requirements**

# **Typical Connections**

| Water Heater Size | Inlet Size |
|-------------------|------------|
| 30-40 gallon      | 1/2" NPT   |
| 50-75 gallon      | 1/2" NPT   |
| Tankless <199k    | 3/4" NPT   |
| Tankless >199k    | 1" NPT     |
| Commercial        | 1"-2" NPT  |

# **Gas Piping Installation Requirements**



- Accessible location
- Approved type

#### 00

#### Union

- Downstream of valve
- Allows removal
- Ground joint type



#### **Drip Leg**

- 3" minimum length
- Before controls
- Capped nipple



#### **Flexible Connector**

- Listed for gas
- 36" maximum length
- No concealed locations

### **Pressure Requirements**

Supply Pressure: Minimum: 5" W.C., Maximum: 10.5" W.C. (NG), Maximum: 13" W.C. (LP)

# **Venting Requirements per Category**

#### **Category I (Atmospheric)**

- B-vent required
- Vertical termination
- Natural draft
- Minimum height: 5 feet

#### **Category II (Not common)**

- Condensing with positive pressure
- Special materials required

#### **Category III (Power Vent)**

- Non-condensing positive pressure
- Stainless steel or approved plastic
- Horizontal venting allowed

#### **Category IV (Condensing)**

- Positive pressure condensing
- PVC/CPVC approved
- Slope for drainage
- Condensate management

# **Common Venting - Connector Rules**

• Rise: 1/4" per foot minimum

• Length: Not >75% of height

• Size: Not smaller than outlet

• Support: Every 4 feet

# **Temperature and Pressure Relief Valve Discharge**

### **Discharge Piping Requirements**

#### **Material**

- Copper
- CPVC (rated for temperature)
- Galvanized steel
- PEX (if rated)

#### **Installation Requirements**

- 3/4" minimum diameter
- No reducers
- No threads on outlet
- Maximum 6" above floor
- Visible termination
- No caps or plugs
- Slope to drain
- Support required

# **T&P Discharge Piping (continued)**

# **Prohibited**

- Direct connection to drain
- Discharge outdoors (freeze risk)
- Threading of discharge end
- Concealed termination

# **Earthquake Strapping**

### **Requirements by Zone**

#### Seismic Zone 4+

- Two straps mandatory
- 22-gauge minimum
- 1-1/2" wide minimum
- Lag bolts to studs

#### Installation

#### **Upper Strap**

- Within upper 1/3 of tank
- 360° wrap or two 180° straps
- Secured to wall studs

## **Additional Bracing**

#### **Lower Strap**

- Within lower 1/3 of tank
- Above controls
- Same requirements as upper

Rigid gas piping, flexible connector limits, platform mounting, wall brackets available

# **Drain Pan Requirements**

### **When Required**

- Above living space
- Where damage possible
- Finished spaces
- Local code requirements

### **Pan Specifications**

- 2" larger than heater diameter
- 1-1/2" to 2-1/2" depth
- · Corrosion-resistant material
- 3/4" drain connection

# **Drain Piping**

- To approved location
- Visible termination
- Indirect waste preferred
- Same as T&P discharge

Section 16.4

# **Water Heater Sizing**

Proper sizing ensures adequate hot water supply while avoiding oversizing that wastes energy and increases costs.

# **First Hour Rating (FHR)**

**Definition:** Amount of hot water delivered in first hour of use, starting with full tank of hot water.

#### **Calculation**

```
FHR = Tank Capacity + (Recovery Rate × 0.7)
```

Example:

50-gallon tank

40 GPH recovery

 $FHR = 50 + (40 \times 0.7) = 78 \text{ gallons}$ 

### **Factors Affecting FHR**

- Tank size
- Input BTU/h
- Temperature rise
- Draw pattern
- Thermostat setting

# **Using FHR for Sizing**

- 1. Determine peak hour demand
- 2. Select heater with FHR ≥ demand
- 3. Consider 10-20% safety factor