# ectrical Safe



Health and safety risk assessment should take into account the risks associated with electricity.

ASSESSING THE RISKS

#### Risk assessment consists of 5 steps:

- 01. Identifying the hazards.
- 02. Deciding who might be harmed and how. 03. Evaluating the risks and deciding on
- 04. Recording your findings and implementing
- 05. Reviewing your risk assessment and updating it if necessary.

#### Most common risks come from:

- Contact with live parts.
- Electrical faults and the risks are greatest where the equipment contains a heat
- Flammable or explosive atmospheres.
- Harsh conditions where unsuitable equipment can easily become live and can make its surroundings live and dangerous.
- Confined spaces where if an electrical fault develops it will be very difficult to avoid a
- Some of the equipment such as extension leads and flexible leads which are particularly liable to damage.

For further guidance please see HSE's website www.hse.gov.uk/risk)



#### Ensure people systems are 'co

#### Ensure the electrica.

- Complies to BS 7 installations.
- Is maintained in
- There are enough

#### Provide safe and sur

- Equipment must Consider using a
- Provide a switch
- Replace damage
- Special electrical atmospheres.
- Consider asking

#### Reduce the voltage

- Temporary lighting Battery-operated
- Portable tools de centre-tapped-to

Provide a safety device at 230 volts or higher detects some faults in switches off the suppl

#### REDUCING

#### Visual inspecti

#### Work safety

- Suspect or fault kept secure until
- If possible, tools switched off befo
- Equipment shoul cleaning or maki

Always expect cables in the street, pavemen Have overhead electri maintain safe working The line or track opera before starting work n



# **CSA Unit 5: Basic Electricity**

# Chapter 1 **Electrical Safety for Gas Technicians**

Gas technicians and fitters often work with electrical equipment that can pose serious safety risks. This presentation covers essential knowledge about electrical hazards, applicable codes, and safety procedures that every gas technician should know to protect themselves and others.







could cause danger

s Occurrences

one using the

ety Executive's


# Purpose and Objectives

## Purpose

Gas technicians/fitters often work in a variety of situations with electrical equipment that can cause injury to themselves and others. Students must be thoroughly familiar with electrical hazards, applicable electrical codes, and safety procedures that relate to their work as gas technicians/fitters.



# Learning Objectives



- Describe electrical code safety requirements

  Understand the regulations that govern electrical work
- Describe lock-out and tagging procedures

  Learn proper protocols for securing electrical equipment
- Describe requirements of applicable electrical safety codes

  Apply relevant standards to your work as a gas technician



## **Key Terminology**

#### Arcing

Lightning-like discharge of electricity across an insulating medium or air space

#### Electric shock

Physiological reaction or injury that results from electric current passing through the (human) body

#### Equipotential

Having the same potential

#### Static charge

Accumulated electric charge that is present on an object

#### Static electricity

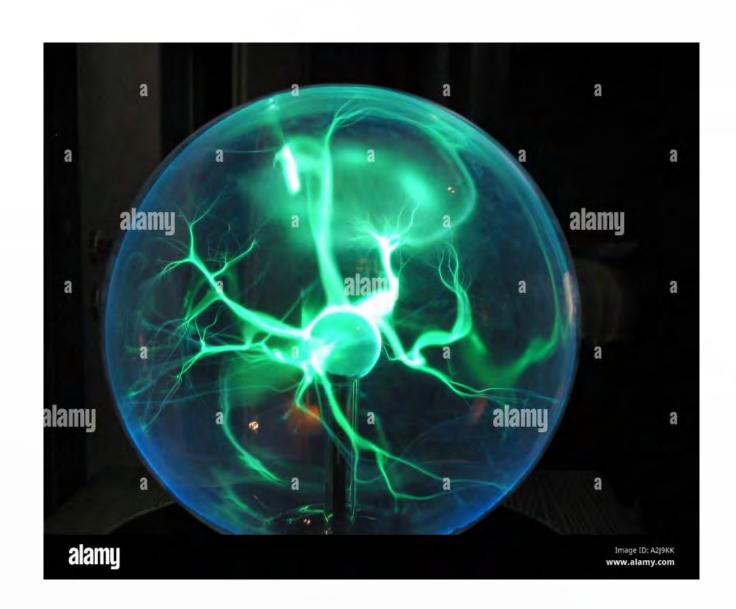
Energy in the form of a stationary electric charge such as that stored in thunderclouds or produced by friction

#### Zero mechanical state

State when you make all energy sources, including electrical, pneumatic, hydraulic, or gravitational, inoperative

## Milliampere (mA)

Unit of electric current equal to one thousandth of an ampere

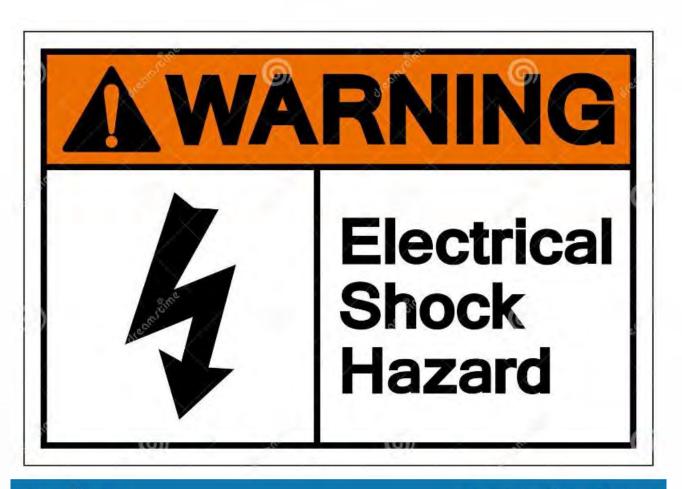

# **Electrical Safety Hazards**

Two common electrical hazards are static electricity and electric shock.

## **Static Electricity**

Static electricity is energy in the form of a stationary electric charge such as that stored in thunderclouds or produced by friction. A static charge is the accumulated electric charge that is present on an object.

The main danger from static electricity is arcing. Arcing is a lightning-like discharge of electricity across an insulating medium or air space. The arc can ignite flammable gases or materials that it comes in contact with. A good example of this phenomenon is the ignition of the fuel mixture by a spark plug in an automobile engine.




## **Electric Shock**

When working with electrical equipment, you must be constantly aware of the hazard of electric shock. You must know what factors increase the danger of shock, how to avoid shock, and what to do when dealing with a shock victim.

## Factors affecting electric shock:

- Amount and path of current
- Type of voltage (AC or DC)
- Value of voltage
- Length of time the body is energized
- Condition of the skin
- Area of contact



dreamstime.com

D 143896871 
Vongyut Chanthaboo

## Current Effects on Human Body

| Range (mA) | Effect                                                                                                        |
|------------|---------------------------------------------------------------------------------------------------------------|
| 1 or less  | No sensation                                                                                                  |
| 1-8        | Shock is felt but not painful. Victim can let go. Muscular control is kept.                                   |
| 8-15       | Shock is painful. Victim can let go. Muscular control is kept.                                                |
| 15-20      | Shock is painful. Victim cannot let go. Muscular control is lost.<br>Breathing is difficult.                  |
| 20-50      | Shock is very painful. Victim cannot let go. There are severe muscular contractions.                          |
| 50-200     | Severe muscular contractions and nerve damage. Possible ventricular fibrillation of the heart, causing death. |
| Over 200   | Severe burns and muscular contractions. Victim cannot breathe during shock.                                   |

Note: Currents in the lethal range do not always cause death if the victim is given immediate medical attention.

# Voltage and Current Dangers

#### Voltage Risks

In practice, operating a flashlight is usually perfectly safe.

This is because the flashlight cell has a very low voltage that cannot overcome the resistance of human skin and current flow is limited.

The danger of shock increases as voltage increases, but low voltages are not necessarily safe. Contact with 120 volts AC, the common household voltage, has led to more deaths than with any other voltage. Note that AC voltages above 750 volts are high voltage.

## DC Voltage Dangers

DC voltages can be very dangerous. Industrial voltages as small as 42 volts DC can be lethal.

Although 75 volts can be just as lethal as 1000 volts, victims of high-voltage shock usually respond better to resuscitation. Provided that they receive the artificial respiration immediately, their chance of survival is good. On the other hand, victims of low-voltage shock do not respond well to artificial respiration, because the low-voltage shock causes uncoordinated twitching of the walls of the heart, which interferes with sudden restoration of normal pulses.

## **Human Body Resistance Factors**

#### Moisture and Salt

When skin is wet or salty, its resistance drops to several hundred from several thousand ohms. Therefore, weather can affect the hazard of shock. Wet, humid, or hot weather causes perspiration, thus reducing resistance. On the other hand, cold, dry weather may increase skin resistance.

Vigorous exercise can also increase perspiration and reduce resistance.

#### **Contact Points**

The body has different resistance at different contact points. Between the ears, body resistance is only 100 ohms. Measured from hand to foot, resistance is nearly 500 ohms.



#### **Abrasions**

Because the insulating layers of skin are absent, abrasions reduce body resistance to well below 100 ohms.

#### **Applied Voltage and Duration**

Skin resistance changes according to the applied voltage. Resistance is lower at high voltages. The longer the application of the voltage to the skin, the lower the resistance.

## Rescuing Shock Victims

#### Act Fast

The most important thing is to ACT FAST. The resistance of the victim decreases with time, and the victim can die in just a few seconds.

#### **Protect Yourself**

Never touch a victim who is still connected to the electric power. If you do, you will also experience shock.

#### **Disconnect Power**

First, try to disconnect the electricity. If you cannot quickly find the switch or plug, try to pull the victim and live conductor(s) apart. Use a dry wooden pole or some other dry insulating material (such as wood, glass, paper, cloth, etc.). Do not use your hands or a conducting material.

## **Begin Resuscitation**

If the victim is unconscious and has stopped breathing, start artificial respiration at once. DO NOT STOP until a medical authority advises you to stop.

## Five Steps to Rescue a Shock Victim



#### Protect yourself

Do not touch the energized victim



#### Free the victim

Disconnect from electrical contact



#### Apply CPR

Use artificial respiration as necessary

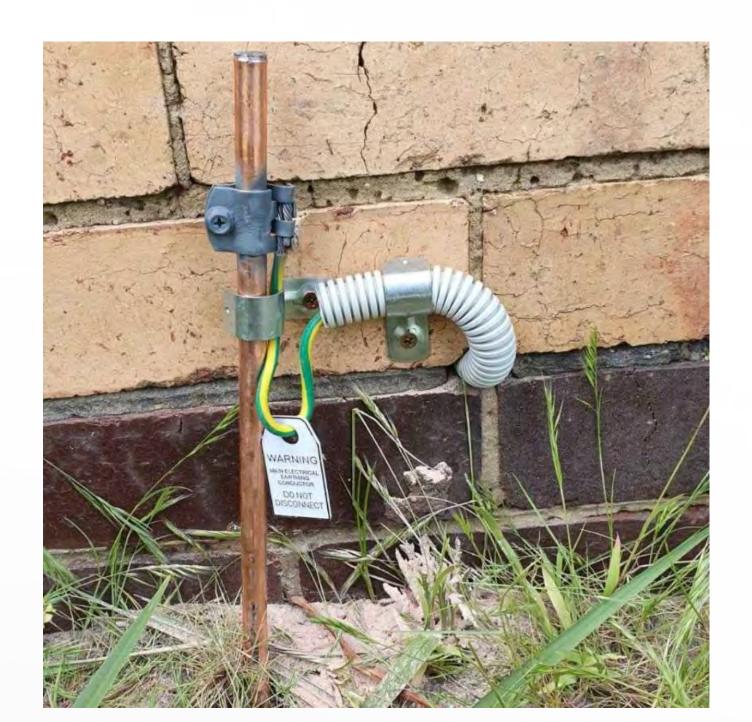


#### Call for help

Contact doctor, nurse, fire department, rescue unit, or police unit



#### Continue resuscitation


Until a medical authority advises you to stop

## Grounding

Proper grounding of tools, equipment, and sources of static discharge is essential for reducing the risk of electrical hazards.

You shall effectively ground portable tools and equipment that require grounding and are not permanently connected to the wiring system through the use of approved three-wire cords and three-prong polarized plugs inserted in grounded polarized receptacles.

You must install ground straps where necessary to prevent static discharge.



## **Double-Insulated Tools**

Many modern portable tools may not have a three-pronged plug but instead are double-insulated and have a two-pronged plug. A tool that is double-insulated provides equivalent shock hazard protection as a tool with a three-pronged grounded plug.

If you use a power tool with a two-pronged plug, ensure that the tool is double-insulated. To determine if the tool is double-insulated, the tool should have certification (e.g., by CSA) and marking with either the words "DOUBLE INSULATED" or the following symbol:

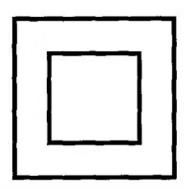



Figure 1-1 Double insulated symbol

# Electrical Code Safety Requirements

#### Code References

Electrical safety codes contain sections and specific rules that deal with the installation and maintenance of electrical equipment as it relates to gas-fired equipment. Most provincial electrical codes are either based on or fully adopt the Canadian Electrical Code. However, some differences may exist, and you should always make reference the code accepted locally or provincially.

#### Canadian Electrical Code

The following provisions are part of the Canadian Electrical Code, Part I (C22.1-18).

## Section 2 - General Rules

## Rule 2-032 Damage and interference

- 1. No person shall damage any electrical installation or component thereof.
- 2. No person shall interfere with any electrical installation or component thereof except that when, in the course of alterations or repairs to non-electrical equipment or structures, it may be necessary to disconnect or move components of an electrical installation, it shall be the responsibility of the person carrying out the alterations or repairs to ensure that the electrical installation is restored to a safe operating condition as soon as the progress of the alterations or repairs will permit.



# Rule 2-100 Marking of equipment

1 Required Markings

Each piece of electrical equipment shall bear those of the following markings necessary to identify the equipment and ensure that it is suitable for the particular installation:

2 Manufacturer Information

The maker's name, trademark, or other recognized symbol of identification

3 Technical Specifications

Catalogue number or type, voltage, rated load amperes, watts, volt amperes, or horsepower

4 Operational Details

Whether for AC, DC, or both; number of phases; frequency in hertz; rated load speed in revolutions per minute

5 Safety Information

Designation of terminals; whether for continuous or intermittent duty; short-circuit current rating or withstand rating; evidence of approval

## Service Box and Distribution Point Marking

#### Service Box Marking

At the time of installation, each service box shall be marked in a conspicuous, legible, and permanent manner, to indicate clearly the maximum rating of the overcurrent device that may be used for this installation.

#### **Distribution Point Marking**

At each distribution point, circuit breakers, fuses, and switches shall be marked, adjacent thereto, in a conspicuous and legible manner to indicate clearly:

- which installation or portion of installation they protect or control; and
- the maximum rating of overcurrent device that is permitted.

# Additional Marking Requirements

#### **Continuous Load Marking**

Where the maximum continuous load allowed on a fused switch or circuit breaker as determined in accordance with Rule 8-104 5) and 6) is less than the continuous operating marking of the fused switch or circuit breaker, a permanent, legible caution marking shall be field applied adjacent to the fused switch or circuit breaker nameplate to indicate the maximum continuous loading permitted for connection to the fused switch or circuit breaker.

## No Unauthorized Markings

The marking on electrical equipment shall not be added to, or changed, to indicate a use under this Code for which the equipment has not been approved.

## Rule 2-110 Circuit voltage to-ground - Dwelling Units

Branch circuits in dwelling Units shall not have a voltage exceeding 150 volts to ground except that, where the calculated load on the service conductors of an apartment or similar building exceeds 250 kVA and where qualified electrical maintenance personnel are available, higher voltages not exceeding the voltage to ground of a nominal system voltage of 600Y/347V shall be permitted to be used in the dwelling Unit to supply the following fixed (not portable) equipment:

- space heating, provided that wall-mounted thermostats operate at a voltage not exceeding 300 volts-to-ground;
- water heating; and
- air conditioning.



## **Additional General Rules**

#### Rule 2-122 Installation of electrical equipment

Electrical equipment shall be installed so as to ensure that after installation there is ready access to nameplates and access to parts requiring maintenance.

## Rule 2-136 Insulation Integrity

All wiring shall be so installed that, when completed, the system will be free from short circuits and from grounds except as permitted in Section 10.

# Rule 2-124 Installation of other than electrical equipment

Equipment or material of other than an electrical nature shall not be installed or placed so close to electrical equipment as to create a condition that is dangerous.

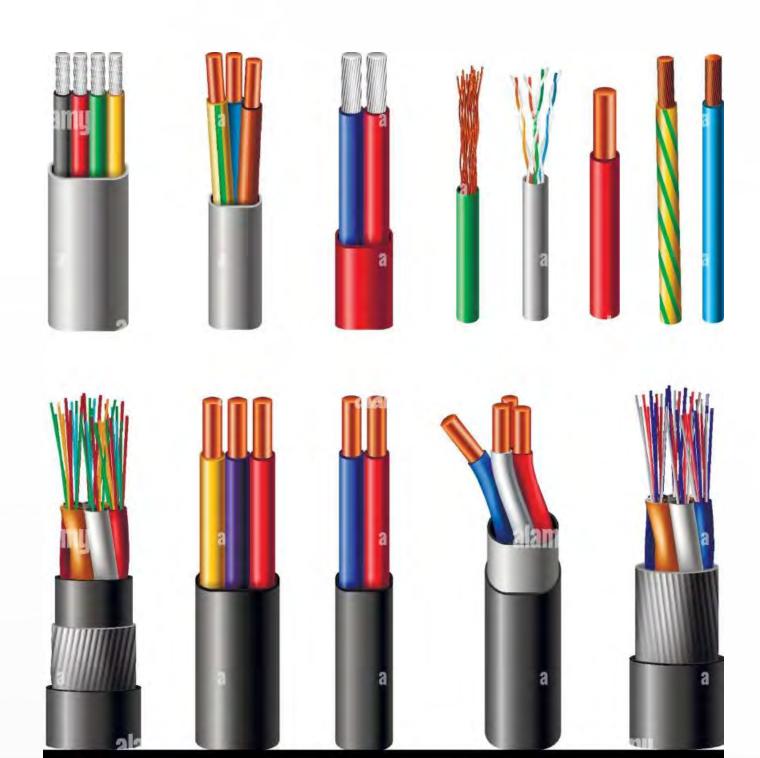
#### Rule 2-306 Shock and arc flash protection

Electrical equipment such as switchboards, panelboards, industrial control panels, meter socket enclosures, and motor control centres that are installed in other than dwelling Units and are likely to require examination, adjustment, servicing, or maintenance while energized shall be field marked to warn persons of potential electric shock and arc flash hazards.

# Rules for Flammable Materials and Gas Equipment

Rule 2-320 Flammable material near electrical equipment

Flammable material shall not be stored or placed in dangerous proximity to electrical equipment.


Rule 2-326 Electrical equipment near combustible gas equipment

The clearance distance between arc-producing electrical equipment and a combustible gas relief device or vent shall be in accordance with the requirements of CSA B149.1.

## Section 4 - Conductors

Section 4 applies to conductors for lighting, appliance, and power supply circuits. It contains rules regarding the following:

- size of conductors;
- current ratings;
- insulation requirements; and
- permitted uses.



## Section 10 - Grounding and Bonding

#### Rule 10-002 Object

The overall objective for grounding and bonding is to minimize the likelihood and severity of electric shock by establishing equipotentiality between exposed non-current-carrying conductive surfaces and nearby surfaces of the earth and to prevent damage to property during a fault, as follows:



#### Solidly Grounding

The objective of solidly grounding an electrical system and bonding its associated equipment is to establish a low impedance connection between the grounded conductor and the non-current-carrying conductive parts of the system to stabilize system voltage.



#### Impedance Grounding

The objective of grounding an electrical system through an impedance is to limit the magnitude of ground fault currents, minimize the damage to equipment resulting from a single ground fault, and stabilize system voltage.



#### **Ungrounded System**

The objective of an ungrounded system is to limit the magnitude of ground fault currents resulting from a single ground fault and minimize the damage to equipment on the occurrence of a single ground fault.



#### **Bonding**

The objective of bonding is to interconnect the non-current carrying conductive parts of electrical equipment and the system grounded point, where one exists, with sufficiently low impedance to facilitate the operation of protective devices and establish equipotentiality.

## Equipotential Bonding of Non-Electrical Equipment

#### Rule 10-700

The following parts of non-electrical equipment shall be made equipotential with the non-current-carrying conductive parts of electrical equipment:

#### Water Systems

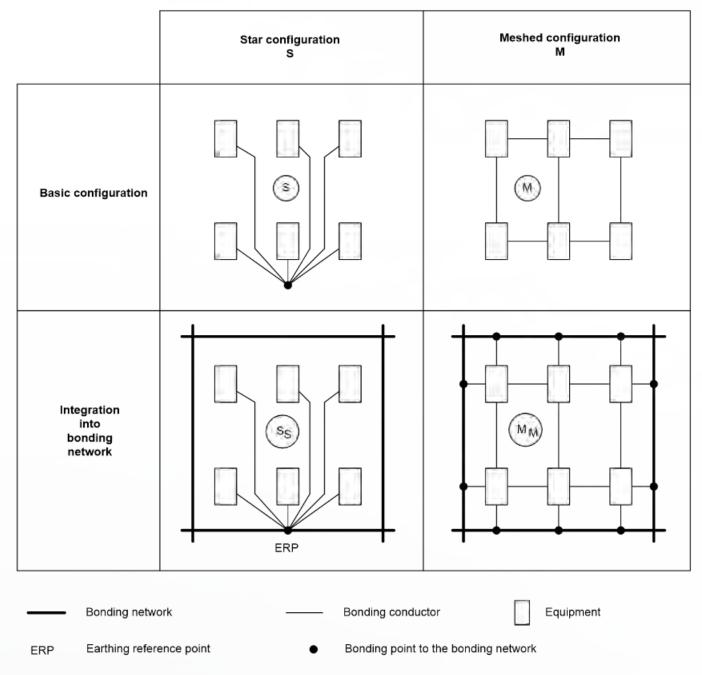
The continuous metal water piping system of a building supplied with electric power

#### Waste Systems

The continuous metal waste water piping system of a building supplied with electric power

#### Gas Systems

The continuous metal gas piping system of a building supplied with electric power


## Other Systems

Raised floors of conductive material with electrical wiring under the raised floor; the conductive metal parts of structures that livestock access; and metal tower and station structures of passenger ropeways, passenger conveyors, or material ropeways

## **Equipotential Bonding Connections**

Rule 10-706 Equipotential bonding connections to nonelectrical equipment

Equipotential bonding connections to non-electrical materials shall be made mechanically secure and be suitable for the condition(s) to which they are subjected.



Star point configuration integrated by star point

# Lock-out and Tagging Procedures

#### **General Procedures**

As a gas technician/fitter, you may often be in an area where employees carry out maintenance procedures on powered machinery. During these times, detailed lock-out procedures are essential to prevent unexpected operation and energizing of the machinery you are working on.

Lock-out must involve more than merely disconnecting the power source. Electrically de-energized machinery that has its hydraulic systems still pressurized has already killed workers. Thus, you must assess the machine thoroughly, and make all energy sources, including electrical, pneumatic, hydraulic, or gravitational, inoperative. This is what you often call zero mechanical state.



## Personal Lock-out Procedures

#### **Use Personal Locks**

As a technician/fitter, you should have your own lock and key (combination locks are not allowed), and use only these locks to lock out energy sources.

#### **Inform Operators**

Inform the machine operator of maintenance plans and tag the lock to identify the individual who has locked out the machinery.

## Personal Responsibility

The only person permitted to remove the lock is the individual who placed the lock on the machinery.

## Apply to All Equipment

Note that these procedures apply not only to stationary industrial equipment but also to mobile equipment, including passenger cars, truck equipment, and heavy construction equipment.



## Canadian Electrical Code Lock-out Requirements

#### Rule 2-304 Disconnection

- 1. No repairs or alterations shall be carried out on any live equipment except where complete disconnection of the equipment is not practicable.
- 2. Three-way or four-way switches shall not be considered as disconnecting means.
- 3. Adequate precautions, such as locks on circuit breakers or switches, warning notices, sentries, or other equally effective means, shall be taken to prevent electrical equipment from being electrically charged when work is being done.

## Lock-out Standards

#### Reference Standards

Reference CSA Z460 Control of hazardous energy-Lockout and other methods and CSA Z462 Workplace Electrical Safety.

Controlling hazardous energy associated with potentially harmful machines, equipment, or processes requires the safety team and individuals to follow strict guidelines. CSA Z460 and CSA Z462 are recognized Standards for the protection of personnel from injury from the inadvertent release of hazardous energy.

#### Hazardous Energy Release

Release of hazardous energy can include any motion, energization, start-up, or release of stored energy that, from the perspective of the person(s) at risk, is either unintended or deliberate. Lock-out is recognized as the primary method of hazardous energy control.

Workers must consult the employer's policies and procedures before conducting any work on equipment and systems with hazardous energy. Training and supervision are a requirement: always attain authorization from the employer or supervisor before attempting any work.

## Worker Responsibilities for Lock-out



## Personal Responsibility

Each worker who works on the machinery or equipment requiring lock-out procedures must be responsible for locking the control devices and removing his or her own locks on the completion of his or her work.



#### Verification

The person applying the first lock in a lock-out procedure must forthwith ensure that operation is not possible for the locked-out machinery or equipment.



#### Lock Removal

Only the person or persons who installed the locks can remove them, or in emergency, the senior shift supervisor on duty who must first make every effort to contact the individual who installed the lock and then ensure safe operation of the machinery or equipment.



## **Shift Changes**

Workers coming on shift shall place their own locks on all control devices before the individuals going off shift remove their locks, or shift supervisors may lock out the control devices during shift changes to allow workers going off shift to remove their locks.

## Key Box System

#### **Qualified Workers**

Two qualified workers, one of whom may be a supervisor, must be responsible for locking out the multiple control devices, each using a set of locks, keyed alike, but not keyed to the other set.

#### **Documentation**

The qualified workers must complete, sign, and post the checklist adjacent to the key box and place in the key box the keys for the locks or other positive sealing devices acceptable to the authority having jurisdiction.

#### **Additional Workers**

All other workers who must work on the machinery or equipment must also lock out the key box using personal locks before commencing maintenance or repair work.

#### **Completion Process**

On the completion of the work, all workers must remove their locks from the key box. The two qualified workers who locked out the equipment must then remove their locks from the key box and from the multiple lock-out points.

#### Written Procedure

A written key box lock-out procedure must remain posted at the key box location.

# Central Control System Exception

Where a central control operator controls systems, the operator shall lock out the central control and record the portion locked out and the time. He or she shall re-energize the system on the instructions of the person who requested the de-energization, who has first determined that it is safe to do so.



## **Motor Disconnects**

Where the intent of installing motor disconnect switches is for lock-out purposes, they must simultaneously disconnect both the motor and motor control circuits from their sources of supply. Such motor disconnect switches must be readily accessible, and where installed in elevated positions, access must be by means of a permanent ladder or by a stairway to a platform.



# Working on De-energized Equipment

#### Worker in Charge

Before work commences on any part of an electrical power system that, for reasons of safety, must operate in a de-energized condition, the worker in charge shall ensure that de-energizing and grounding of the part of the system he/she is working on and lock-out of the controls are complete.

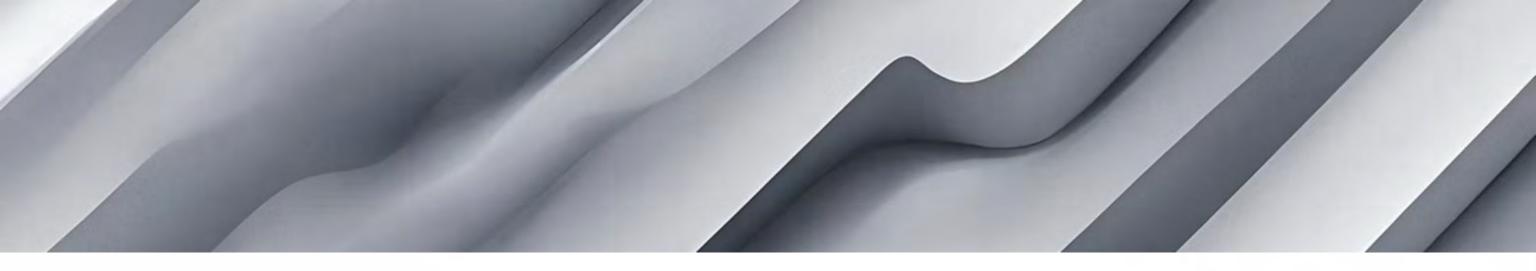
#### Assurance of De-energization

When the control devices are not under the direct control of the worker, he or she must receive assurance from the person in charge of the control devices that the work may safely proceed. The person giving the assurance must record such assurances.

## Protection Against Re-energizing

Before commencing work on the de-energized part of the system, the worker in charge must ensure protection of all workers against re-energization.

## Authority to Re-energize


Re-energization of the system must not take place except on the instructions of the worker who had requested the de-energizing or a supervisor who has first determined that it is safe to do so.

## **Electrical Inspections and Permits**

Most jurisdictions require permits for all electrical work. The locally recognized electrical code, typically in Section 2.General Rules cover the general rules governing the administration of electrical permits.

It is the responsibility of the electrical contractor or others responsible for carrying out the work to obtain a permit from the local electrical inspection department before commencing work with respect to installation, alteration, repair, or extension of any electrical equipment. A copy of the electrical permit must remain posted in a conspicuous place on the site of the work until completion of the electrical inspection.





## Canadian Electrical Code Requirements

#### Code Reference

The Canadian Electrical Code contains sections and specific rules that deal with the installation and maintenance of electrical equipment as it relates to gasfired equipment. The following criteria are part of the Canadian Electrical Code, Part I (CSA Standard C22.1-18), but it is important that you make reference to the Code approved in the jurisdiction of the work site.

#### Section 12 - Wiring Methods

Section 12 deals with wiring installation requirements.

#### Section 14 - Protection and Control

Section 14 covers the protection and control of electrical circuits and apparatus installed in accordance with Sections of the Code, including circuit breakers and fuses.

# Section 26 - Installation of Electrical Equipment

# **Heating Equipment**

Rule 26-800 Scope

Rules 26-802 to 26-808 apply to circuits supplying power for the operation and control of non-portable heating equipment that uses solid, liquid, or gaseous fuel.

# Rule 26-802 Mechanical protection of cables

Cables for all branch circuit or tap conductors within 1.5 m from the floor shall be adequately protected from mechanical damage.

# Safety Control Circuit Requirements

# **Voltage Limitation**

4.8.5 The nominal supply voltage of a safety control circuit shall not exceed 120 V.

#### 120V Branch Circuit

4.8.6 A safety control circuit intended to be supplied by a nominal 120 V branch circuit shall comply with the following:

- The circuit shall not be grounded within the equipment;
- The ungrounded conductor shall have an overcurrent protection device rated at not more than 125% of the current drawn by the circuit, except that this value may be increased because of inrush currents and ambient temperatures.

# 李

# **Alternative Supply**

4.8.7 A safety control circuit supplied by other than as specified in Clause 4.8.6, such as one supplied by a battery or a transformer, shall comply with specific requirements for 2-wire circuits not exceeding 120V.



# **Circuit Interruption**

4.8.8 A safety control shall interrupt the current in the ungrounded conductor of the circuit between the overcurrent protection and the load.

# Rule 26-806 Heating Equipment Rated 117 kW and Less

# Single Branch Circuit

Except as permitted by Subrule 3), all electric power for the heating Unit and associated equipment operating in connection with it shall be obtained from a single branch circuit that shall be used for no other purpose.

For the purpose of this Rule, circulating pumps and similar equipment need not be considered as associated equipment, provided that such equipment is not essential for the safe operation of the heating Unit.

Subrule 1) does not apply to a water heater using a gaseous fuel.

# **Tapping and Disconnecting**

The branch circuit shall be permitted to be tapped as necessary to supply the various pieces of associated equipment, but there shall be no overcurrent protection supplied in the tap to any piece of associated equipment the operation of which is essential to the proper operation of the heating Unit, unless the control equipment is of such a nature that the heating Unit will be shut down if the associated equipment fails to function due to the operation of the overcurrent device.

Suitable disconnecting means shall be provided for the branch circuit.

# Disconnecting Means for Heating Equipment

## Circuit Breaker as Disconnect

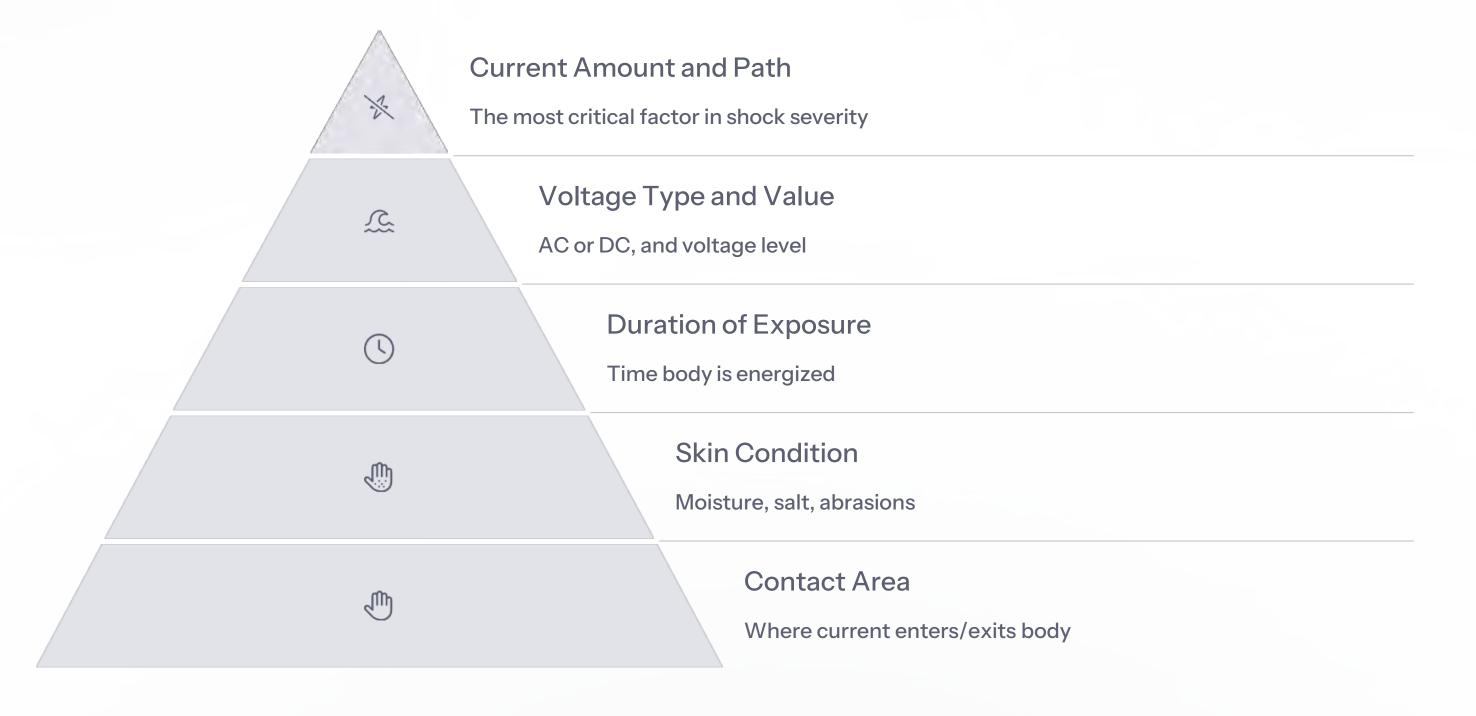
The disconnecting means shall be permitted to be a branch circuit breaker at the distribution panelboard, provided that the panelboard is located between the furnace and the point of entry to the area where the furnace is located.

# Separate Switch Requirements

Where a separate switch is required due to the unsuitable location of the branch circuit breaker, it shall:

- not be located on the furnace nor in a location that can be reached only by passing close to the furnace; and
- be marked to indicate the equipment it controls.

# Rule 26-808 Heating Equipment Rated at More Than 117 kW


# **Power Supply**

All electric power for the heating Unit and associated equipment operating in connection with it shall be obtained from a single feeder or branch circuit that shall not be used for other purposes.

# **Disconnecting Means**

A suitable disconnecting means shall be provided for the feeder or branch circuit.

# Factors Affecting Electric Shock





# Current Effects on the Human Body

# 1mA

Threshold of Feeling

Current just perceptible

# 5 mA

Slight Shock

Painful but victim can let go

# 15 mA

Muscle Control Lost

Cannot let go, breathing difficult

# 50 mA

**Lethal Threshold** 

Possible ventricular fibrillation

# **Electrical Safety Hazard Prevention**

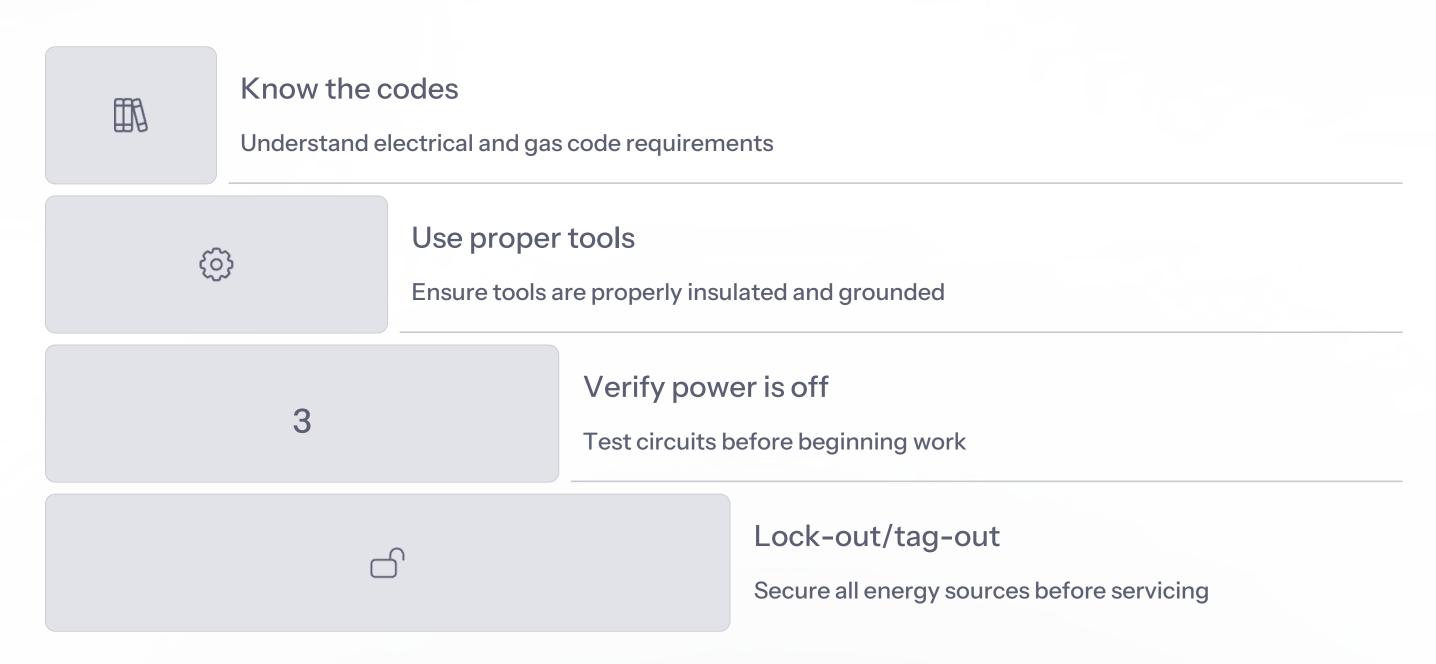
# **Identify Hazards**

Recognize potential electrical dangers in the workplace

# Regular Inspection

Maintain and test equipment and safety systems




# Implement Controls

Apply proper grounding, bonding, and insulation

## **Train Personnel**

Ensure all workers understand electrical safety procedures

# Electrical Safety in Gas Equipment Installation



# **Proper Grounding Techniques**



#### **Three-Prong Plugs**

Ensure all three-wire cords and three-prong polarized plugs are inserted in grounded polarized receptacles for proper grounding of portable tools and equipment.



#### **Ground Straps**

Install ground straps where necessary to prevent static discharge, especially in areas where flammable gases may be present.



#### **Double-Insulated Tools**

Double-insulated tools provide equivalent shock hazard protection as grounded tools. Look for the double-insulated symbol or marking on the tool.

# Personal Protective Equipment for Electrical Safety



#### **Insulated Gloves**

Rubber insulating gloves provide protection against electrical shock when working with or near energized equipment. Always inspect gloves for holes or damage before use.



#### Safety Footwear

Electrical hazard (EH) rated footwear provides secondary protection against incidental contact with electrical circuits of 600 volts or less under dry conditions.



#### Face and Eye Protection

Arc-rated face shields and safety glasses protect against arc flash and flying particles during electrical work.

# Testing Equipment for Electrical Safety





Always use properly rated test equipment to verify that electrical circuits are de-energized before beginning work. Test equipment should be inspected before each use and calibrated regularly according to manufacturer specifications.

# Lock-out/Tag-out Equipment













A comprehensive lock-out/tag-out program requires proper equipment to secure energy sources. Each worker should have their own personal locks and tags to ensure accountability and safety during maintenance procedures.

# Static Electricity Control

# Hazards of Static Electricity

Static electricity poses a significant risk in environments where flammable gases are present. The main danger is arcing, which can ignite flammable materials or gases.

A static charge can build up on objects through friction, particularly in dry environments or when materials are separated. This accumulated charge can discharge suddenly, creating a spark that may ignite flammable substances.

#### **Control Measures**

- Use proper grounding techniques for all equipment
- Install ground straps where necessary
- Use anti-static mats in work areas
- Maintain proper humidity levels when possible
- Wear anti-static footwear and clothing
- Use bonding wires to connect containers during liquid transfers

# **Electrical Safety Documentation**



#### **Permits**

Obtain all required electrical permits before beginning work. Keep permits posted in a conspicuous location at the work site until inspection is complete.

# Form Date [28/11/2050] Time [09:00 AM]. Equipment Name/ID [Hydraulic Press HP-2001] Department [Production] Performed By [Your Name] Supervisor [Name] Procedure Steps: 1. Notification: Notify all effected amployees that a lockout/tagout procedure is going to be implemented and the reason for it. 2. Identification: Clearly identify the equipment or machinery to be locked out.

#### **Lock-out Procedures**

Document all lock-out procedures and maintain records of lock-out activities. Written procedures should be posted at key box locations.

# WORKING IN CLOSE PROXIMITY TO OVERHEAD ELECTRICAL LINES I has a real Advancement treen quotisated to alctermine cable operating procedures and political extension cable operating the procedure and political extension cable operating and contact phen makes with power supply entity in formulate as safety plan and determine the leep? of powerfroms and voltages? I has the height of the exposed two lines been determined? I have a been determined whether or not the fines are included or buse? I has the voltage of the exposed two lines been determined. Where a risk has been determined of the likelihood of machinery varieting the exclusion come unund a power like. How the proved supply withly been required in to the order of the political power likes. How consultations with the power supply entity been required in the conformation of the power supply entity been consultations with the power supply entity been consultations with the power supply entity been required in the workshop of the power supply entity been consultations with the power supply entity been consultations with the power supply entity been required in the workshop of entire by you or a bent scale? I has the rook assessment determined the operating characteristics, size and machinestratify of any machinery or great that may be used anount power likes or a bent scale?

#### **Inspection Records**

Maintain records of all electrical inspections, including notification to inspection authorities and results of inspections.



# Electrical Safety Training Requirements



# Code Knowledge

Understanding of applicable electrical codes



# **Hazard Recognition**

Ability to identify electrical dangers



# Safe Work Practices

Proper techniques and procedures



# **Emergency Response**

First aid and rescue procedures

# **Electrical Safety Inspection Checklist**



# Cords and Plugs

Check for frayed cords, damaged insulation, and proper grounding pins



# **Guards and Covers**

Verify all electrical panels and junction boxes have proper covers



## Labeling

Confirm all electrical equipment is properly labeled and marked



# Receptacles

Ensure receptacles are properly grounded and not overloaded



# **Moisture Protection**

Check that electrical equipment is protected from water and moisture



# Disconnecting Means

Verify accessible and functioning disconnects for all equipment



# Electrical Safety for Specific Gas Equipment

#### **Furnaces**

Ensure proper grounding, dedicated circuit where required, and appropriate disconnecting means. Verify safety control circuits operate at no more than 120V.

# Boilers

Verify appropriate disconnecting means and circuit protection. Ensure all safety controls interrupt the ungrounded conductor.

#### **Water Heaters**

Check for proper electrical connections and grounding. Note that water heaters using gaseous fuel may not require a dedicated circuit.

# Gas Fireplaces

Check that electrical components are properly protected from heat and that wiring is rated for the temperature environment.

# **Emergency Response to Electrical Incidents**

#### Assess the Situation

Quickly evaluate the scene for electrical hazards before approaching the victim. Look for downed power lines, energized equipment, or water near electrical sources.

#### Disconnect the Power

If possible, turn off the power at the circuit breaker, fuse box, or unplug the equipment. Never touch a person who is still in contact with an electrical source.

# Call for Emergency Help

Contact emergency services immediately. Electrical injuries can cause internal damage that may not be immediately visible.

#### **Provide First Aid**

Once the victim is separated from the electrical source, check for breathing and pulse. Begin CPR if necessary and continue until emergency services arrive.

#### Document the Incident

Record all details of the incident, including the equipment involved, actions taken, and any witnesses present.

# Review of Key Electrical Safety Concepts



## Hazard Identification

Recognize static electricity and electric shock risks



# Code Compliance

Follow all applicable electrical safety codes



# Lock-out/Tag-out

Properly secure all energy sources before work



# **Proper Grounding**

Ensure all equipment is correctly grounded



## **Personal Protection**

Use appropriate PPE for electrical work



# **Emergency Response**

Know how to safely respond to electrical incidents

# CSA Unit 5

Chapter 2 Basic Electrical Theory and Concepts



# Purpose and Objectives

# Purpose

The gas technician/fitter requires a basic knowledge of electrical theory in order to understand the operation of electrical components and circuits.

# Objectives

At the end of this Chapter, you will be able to:

- describe atoms, electrons, and electricity;
- describe electrostatic charges and fields; and
- describe the production and use of electricity.

# **Key Terminology**

#### Atom

Smallest particle of matter that can take part in a chemical reaction

## Electric current

Transfer of electrical energy from moving electrons

#### Insulator

A substance or device that does not readily conduct electricity

#### Conductor

Material through which electric current can pass

# Electromagnetism

Phenomenon when any conductor of electric current acts like a magnet

#### Ion

An atom or molecule with a net electric charge due to the loss or gain of one or more electrons

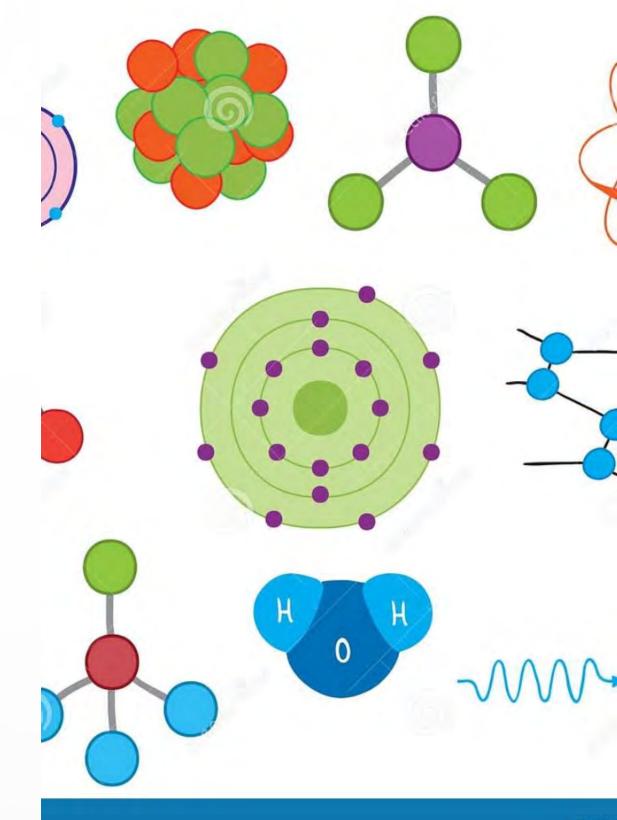
# **Atoms and Molecules**



# Matter

Everything that has mass or occupies space is what you call matter.

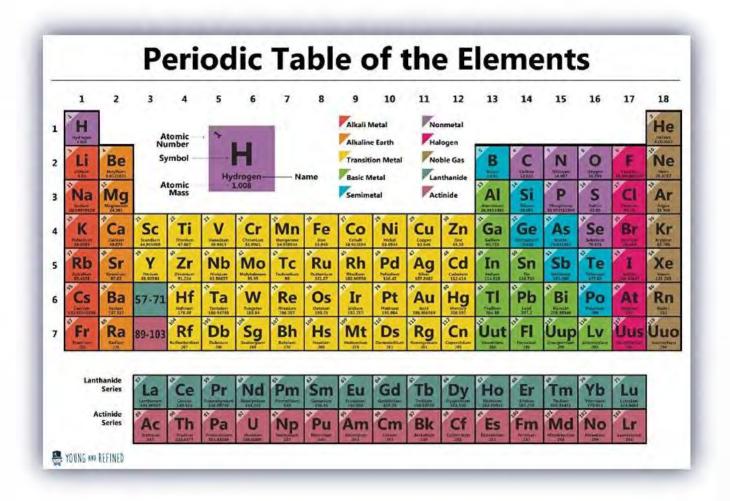



# **Atoms**

The smallest particle of matter that can take part in a chemical reaction is an atom. Atoms are the submicroscopic building blocks of matter.



# Molecules

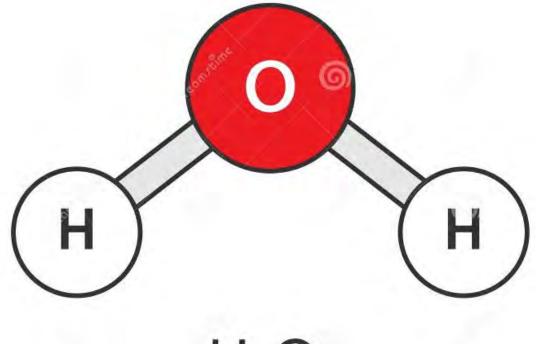

Atoms combine to form larger particles called molecules. Atoms and molecules are much too small to be seen or weighed directly.



# **Elements and Compounds**

#### Elements

An element is a substance made up of only one kind of atom.

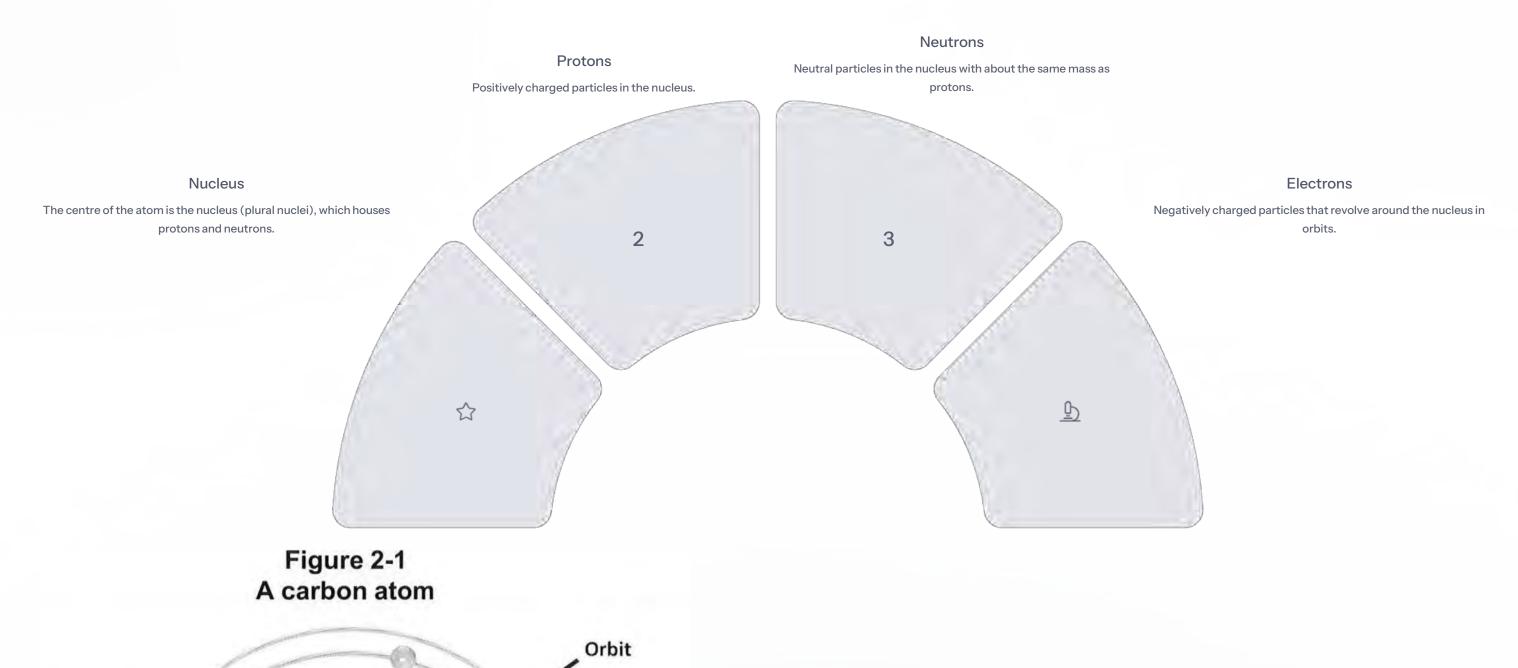



#### Compounds

A compound contains more than one type of atom, chemically combined.

Water is an example of a compound. Each water molecule is made up of one oxygen atom and two hydrogen atoms.

# Water Molecule






# **Atomic Structure**

Nucleus,

Proton





# Carbon Atom Structure

The diagram shows a carbon atom with 6 protons in its nucleus and 6 electrons revolving around it in orbits. The number of electrons, protons, and neutrons in the atoms of an element determines how that element behaves.

Atoms of different elements have different numbers of protons in their nuclei. This number is the atomic number that identifies that element. For example, the nucleus of a carbon atom always contains 6 protons, and you say that the atomic number of carbon is 6.

6

2

29

Carbon Atomic Number

Number of protons in a carbon atom

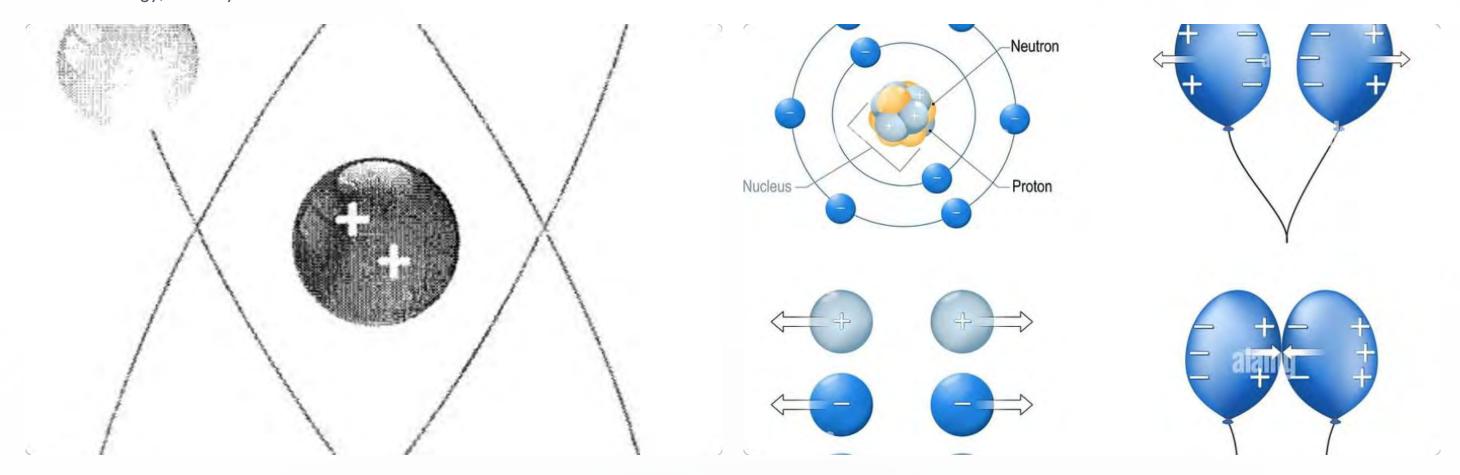
Helium Atomic Number

Number of protons in a helium atom

Copper Atomic Number

Number of protons in a copper atom

# **Subatomic Particles**


| Particle | Charge       | Location              | Characteristics                                                                         |
|----------|--------------|-----------------------|-----------------------------------------------------------------------------------------|
| Electron | Negative (-) | Orbits around nucleus | Easy to move,<br>actively<br>participates in<br>transfer of<br>electrical energy        |
| Proton   | Positive (+) | Nucleus               | Influences flow<br>of electrons, not<br>directly active in<br>electrical energy<br>flow |
| Neutron  | Neutral      | Nucleus               | Similar mass to proton                                                                  |

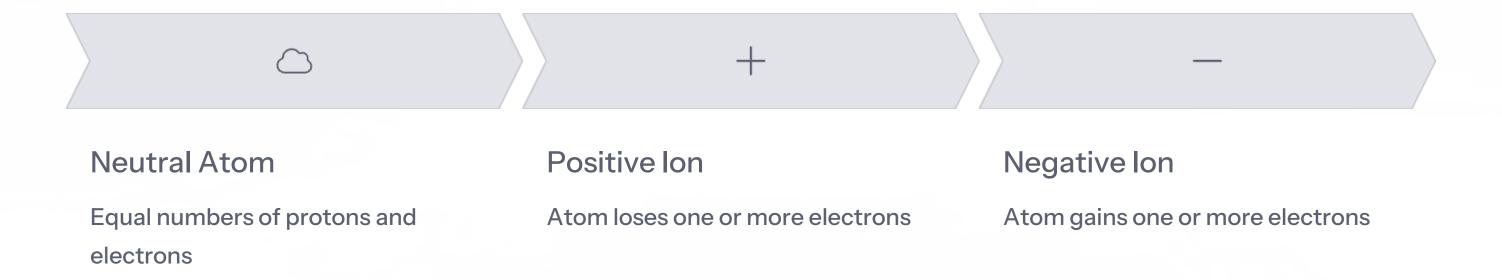
| [ | CHARGE |  |  |
|---|--------|--|--|
|   | + 1    |  |  |
|   | 0      |  |  |
|   | -1     |  |  |

# **Electron and Proton Relationship**

The electron carries the basic Unit of electrical charge. For historical reasons, an electron's charge is considered to be a negative(-) charge. Because it is free to move, an electron actively participates in the transfer of electrical energy.

The proton carries a positive(+) charge, opposite to that of an electron. It has the same size of charge as the electron's negative one. Protons are not directly active in the flow of electrical energy, but they do influence the flow of electrons.




Negative electrons revolve in orbits around the positively charged nucleus

The nucleus of an atom has an overall positive electrical charge due to the protons. The negatively charged electrons revolve around the positive nucleus.

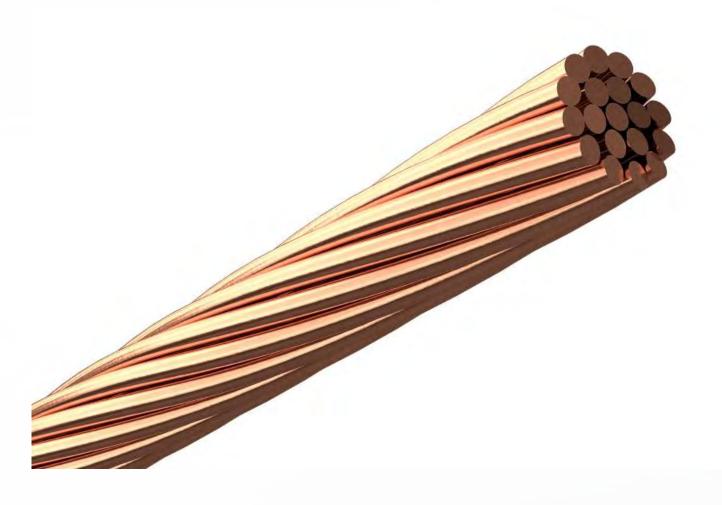
#### **Attraction Between Charges**

The opposite charges of electrons and protons create an attraction that keeps electrons orbiting around the nucleus.

# Atoms and lons



Under normal circumstances, the atom has equal numbers of protons and electrons. These charges cancel each other out, and the atom as a whole is electrically neutral.


An atom can receive a negative charge through the addition of electrons. It can receive a positive charge through removal of electrons. When charging an atom occurs these ways, the atom becomes ionized and is now an ion. For example, a positive ion is an atom that has had one or more electrons removed.

Since protons are firmly bound into the nucleus, only electrons can take part in ionizing the atom.

# **Conductors and Insulators**

#### Conductors

Some materials, including copper and aluminum, have electrons that are easy to free. They are said to have many free electrons and are conductors. Conductors allow easy transfer of electrical energy.



#### Insulators

Some other materials, such as glass and rubber, have electrons that are very difficult to free. They are said to have few free electrons and are insulators. Insulators block the transfer of electrical energy.

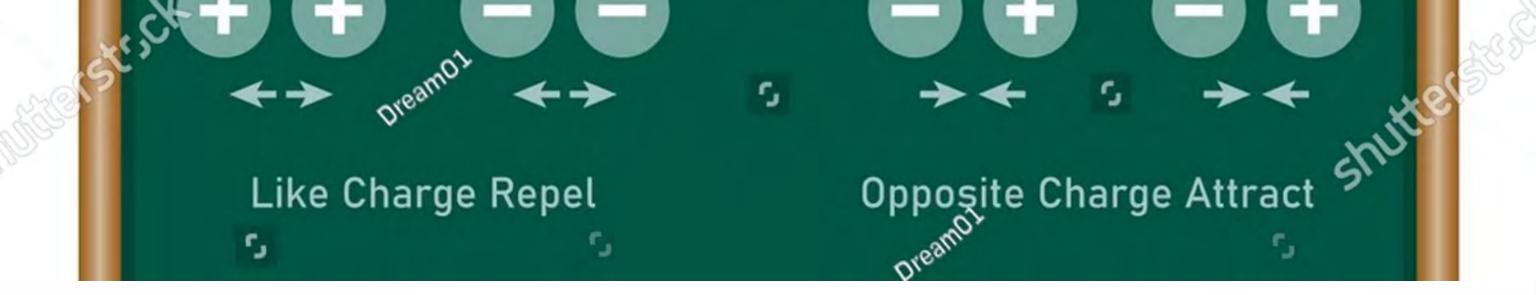


# Electrostatic Charges and Fields

Electrostatic charges and fields are also known as static electricity. Static electricity is energy in the form of a stationary electric charge such as that stored in thunderclouds or produced by friction.

For example, when you rub together certain pairs of materials (such as fur and a rubber rod), an electrostatic charge is produced. The friction produces heat energy that releases electrons from the atoms on the surface of one of the materials.




# STATIC ELECTRICITY Step 1 Step 2

# Static Electricity in Nature

Thunderclouds store static electricity that can be released as lightning.

#### Friction-Generated Static

Rubbing materials together can generate static electricity through the transfer of electrons.



# **Electrical Charges**

| Electron/Proton Balance                  | Resulting Charge      |
|------------------------------------------|-----------------------|
| Fewer electrons than protons             | Has a positive charge |
| More electrons than protons              | Has a negative charge |
| The same number of electrons and protons | Is neutral            |

An object may possess a positive electrical charge, a negative electrical charge, or it may be electrically neutral. The type of charge that an object has depends on the number of electrons and protons it has.

# Laws of attraction and repulsion Repulsion Repulsion Neutral Attraction MAGE 10: 2169901327 WWX.Shutterstock.com

# Law of Electrical Charges

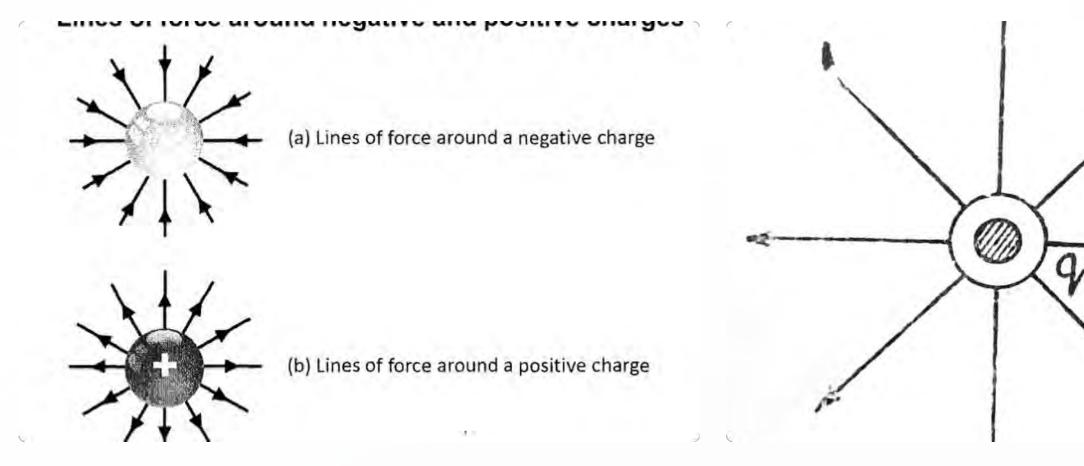
#### The Fundamental Law

Like charges repel and unlike charges attract.

# **Negative and Negative**

Negatively charged particles repel other negatively charged particles. They tend to move away from each other.

#### Positive and Positive


Positively charged particles repel each other. They tend to move away from each other.

# Positive and Negative

Negatively charged particles attract positively charged particles. They tend to move toward each other.

# **Electrostatic Forces and Fields**

The electrical charges on protons and electrons are electrostatic charges. An electrostatic charge has an electrostatic field associated with it and, within this field, electrostatic forces occur. These forces are the forces of attraction and repulsion between charged particles.



# Lines of Force Around a Negative Charge

Electrical diagrams show the lines of force around a negative charge as straight lines with arrows pointing toward the charge.

# Lines of Force Around a Positive Charge

Diagrams show the lines of force around a positive charge as radiating outward from the charge.

# Forces of Attraction and Repulsion

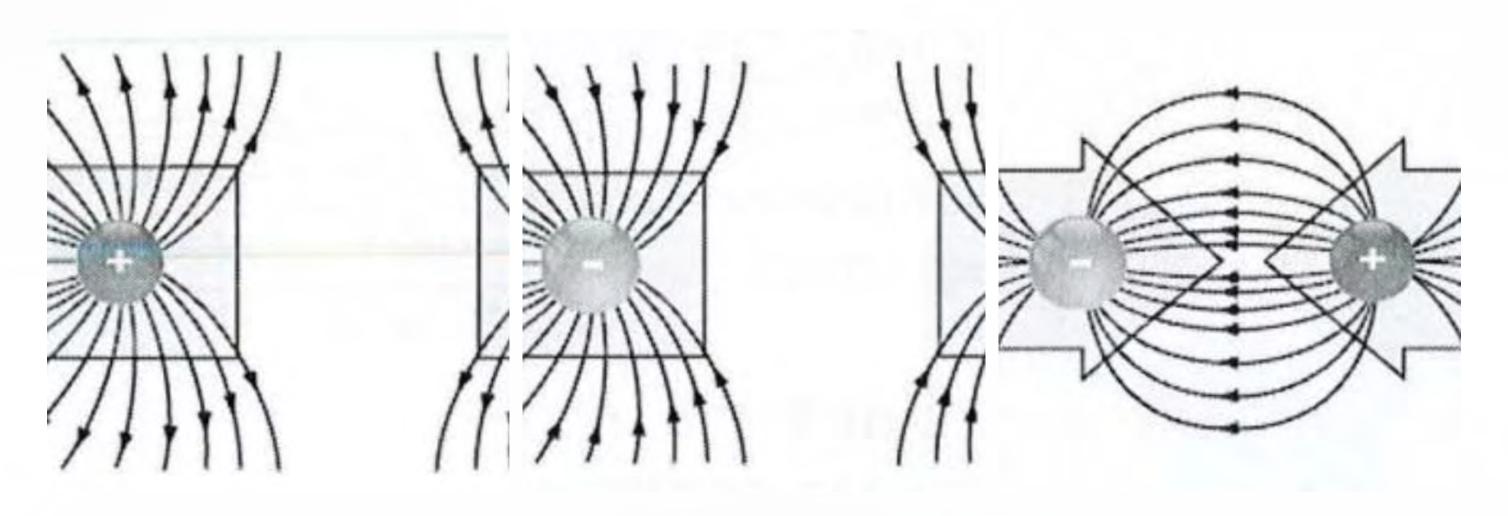



Figure 2-4 shows how the lines of force around positively and negatively charged objects cause forces of attraction and repulsion.

The strength of the forces of attraction and repulsion depends on:

- the amount of charge on each object; and
- the square of the distance between the objects.

The greater the electric charges on the objects, the greater the electrostatic force.

# Production of Electricity

111

Heat - Thermoelectricity

The application of heat to two different metals joined together leads to the transfer of electrons across the junction.



Magnetism - Electromagnetism

When a conductor passes a magnetic field, the forces of the magnetic field act on the electrons in the conductor.



Chemicals - Electrochemistry

Chemical action results in the transfer of electrons from one electrode to another through an electrolyte.



Pressure - Piezoelectricity

Force from the application of pressure to certain crystal materials drives the free electrons out of orbit.



**Light - Photoelectricity** 

When light strikes certain materials, the energy from the light causes the atoms to release electrons.



# Thermoelectricity



**Heat Application** 

Heat is applied to two different metals joined together



**Electron Transfer** 

Electrons transfer across the junction

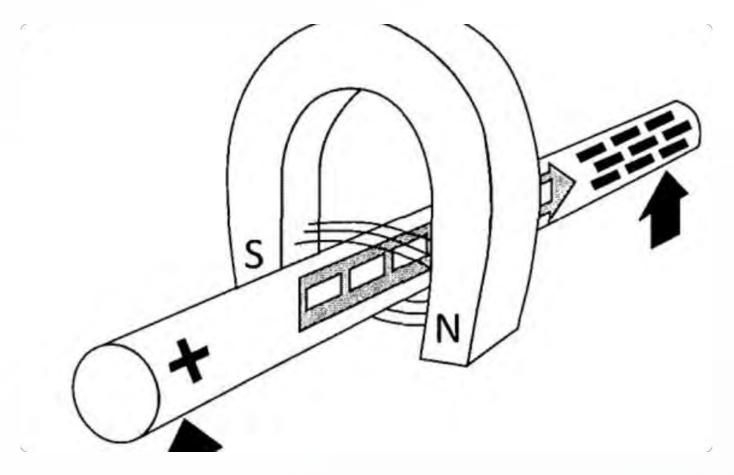


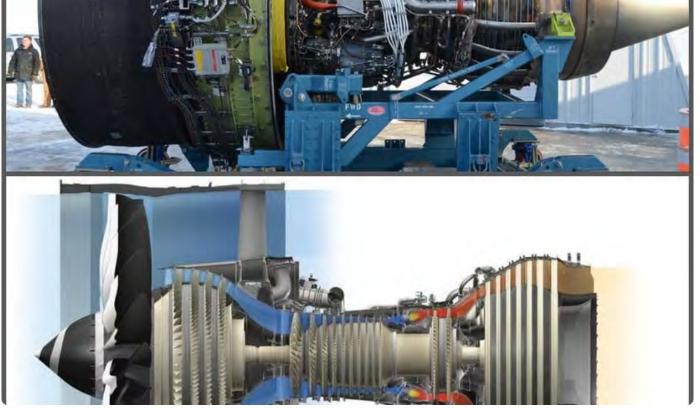
**Charge Creation** 

One side becomes positive with respect to the other



**Practical Application** 


Thermocouples function as thermometers to detect and measure temperature


Thermocouples often function as thermometers to detect and measure temperature. The current that a thermocouple produces is enough to hold in a small electromagnet within a gas valve, indicating the presence or absence of a pilot flame.

# Electromagnetism

Magnetic force fields surround magnets, which have magnetic poles that attract or repel each other. When a conductor passes a magnetic field, the forces of the magnetic field act on the electrons in the conductor, causing them to move through the conductor.

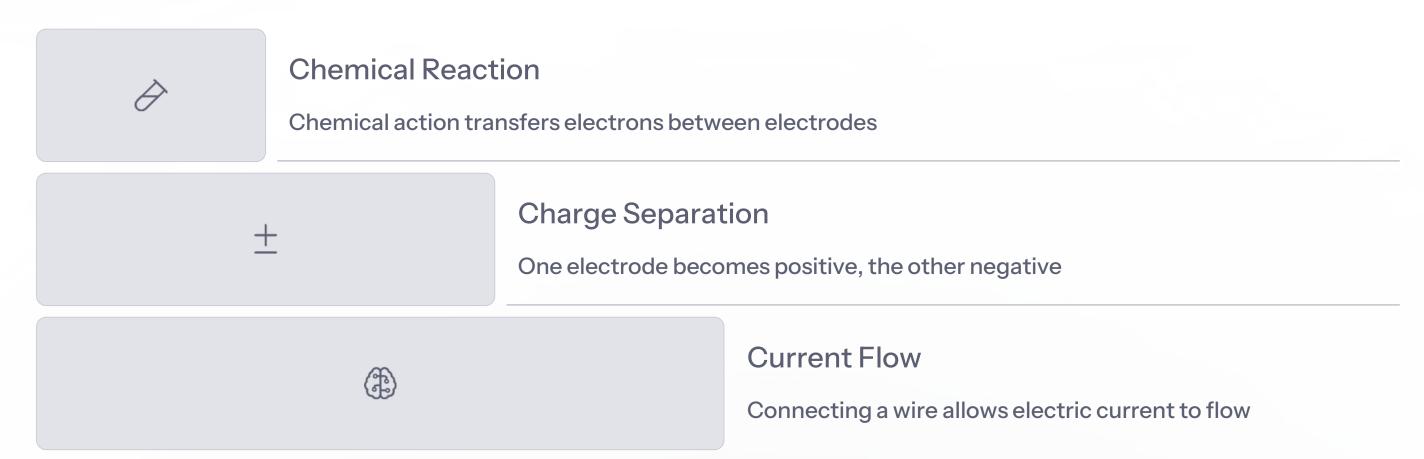
The same thing happens if you hold steady the conductor in a moving magnetic field. An electric generator produces electricity by electromagnetism.





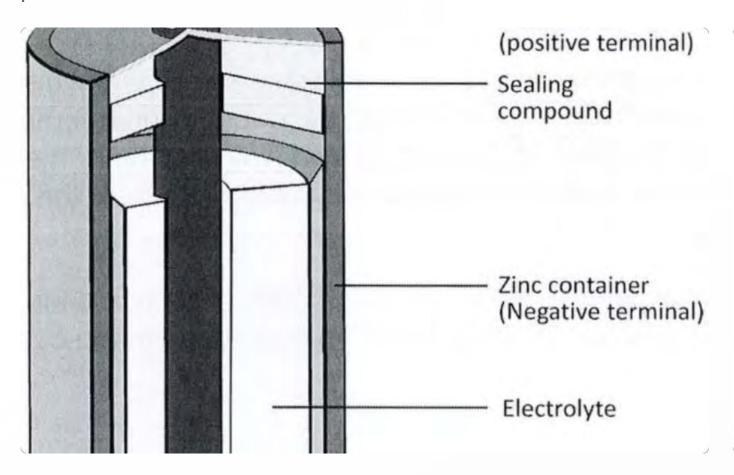
#### Conductor Passing Through Magnetic Field

When a conductor passes through a magnetic field, electrons in the conductor are forced to move, creating an electric current.


#### **Electric Generator**

Generators use the principle of electromagnetism to convert mechanical energy into electrical energy.

# Electrochemistry - Batteries


A flashlight battery is a common example of the electrochemical production of electricity. A battery is a group of voltaic cells. A voltaic cell is a product of immersing two different metal electrodes in a chemical solution called electrolyte.

This creates a difference of potential between the two electrodes. Potential difference is the measure of the ability of a Unit of electrical charge to do a certain amount of work.



# **Dry Cell Battery Structure**

Flashlight batteries are dry cells. They have a liquid electrolyte, but it combines with other materials to form a paste. This allows the use of the cell in any position.





The zinc battery container is the negative electrode, and a carbon rod in the centre of the cell is the positive electrode.



#### **Internal Components**

The space between the positive and negative electrodes contains a mixture of carbon, manganese dioxide, and electrolyte. The top of the cell has a seal to prevent evaporation, as the battery will not work when the electrolyte dries out.



# Piezoelectricity



**Pressure Application** 

Force is applied to crystal materials



**Electron Movement** 

Free electrons are driven out of orbit



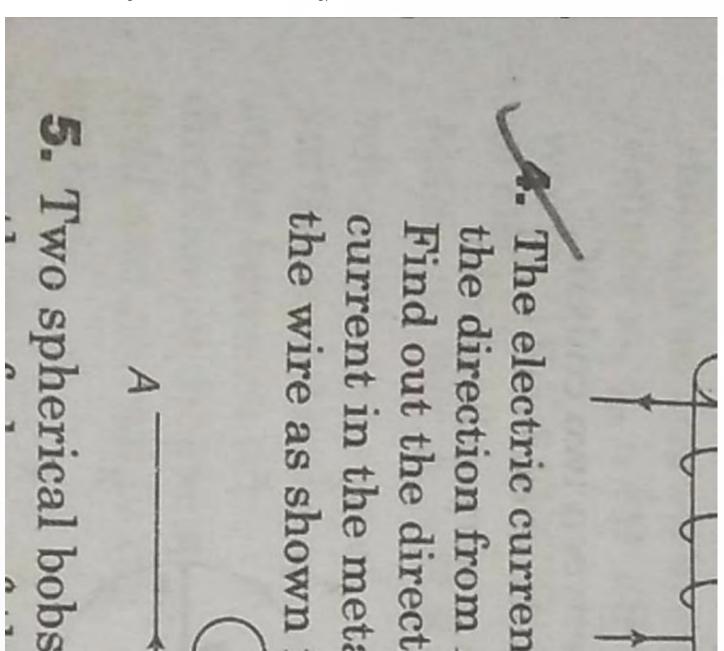
**Charge Creation** 

Positive and negative charges build up on opposite sides

Force from the application of pressure to certain crystal materials drives the free electrons out of orbit. Positive and negative charges build up on opposite sides of the material. You use this principle in such things as spark igniters for gas barbecues.

#### Static vs. Dynamic Electricity

#### Static Electricity


In static electricity, electric charges are at rest. Static electricity normally does not perform useful work.



#### Dynamic Electricity (Electric Current)

To use electrical energy to do work, set the electrons in directed motion. When you make electrons to move in the same direction, they produce an electric current.

The flow of electric current carries energy that can perform work. The more electrons that move in the same direction, the greater the flow of current and the greater the amount of available energy.



### **Conducting Materials**

Materials that conduct electricity well and have low electrical resistance are conductors. Most metals are good conductors, but some are better than others.



# Aluminum as a Conductor



#### Lightweight

Technicians use aluminum for high-voltage transmission lines because it is much lighter than copper.



#### **Cost-Effective**

Aluminum is cheaper than copper, making it economical for large-scale applications.



#### Structural Challenges

Pure aluminum is weak and could not support its own weight in transmission lines.



#### Reinforced Design

Transmission conductors are made with one or more core strands of steel cable, with strands of aluminum cable wrapped around them.



# **Conductor Heating**

#### **Heating Elements**

Conductors heat up when current is flowing through them. This is a good thing in the case of conductors that work as heating elements.



#### **Transmission Conductors**

Heating is not a good thing in the case of using conductors in electrical transmission, as it represents energy loss and can damage insulation.



# Insulating Materials

#### **Plastic**

Extensively used as electrical insulation for household wiring.

Lower voltages require less insulation, so relatively thin plastic can be used.

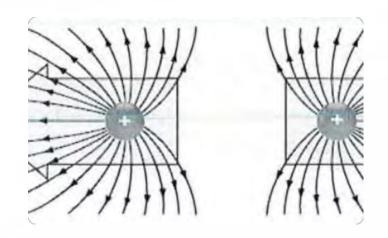
#### Glass

Good insulator for very high voltages. In long lengths, it provides adequate insulation for transmission lines.

#### Porcelain

Poor conductor of electricity, extensively used as electrical insulator for high voltage applications.

#### Air


Functions as an insulator for very high voltages when sufficient distance is maintained.

#### Oil

Used as an insulator in high voltage applications such as transformers.

# **Transmission Line Insulators**

For very high voltages, plastic is not an adequate insulator. At very high voltages, porcelain, glass, air, or oil function as insulators.



#### **Transmission Tower**

A transmission tower supporting a single conductor. A long glass holds away the conductor from the metal of the transmission tower.



#### Glass Insulators

Glass is a good insulator and, in long lengths, it provides adequate insulation for very high voltages.

# Voltage and Insulation Breakdown

#### **Insulator Effectiveness**

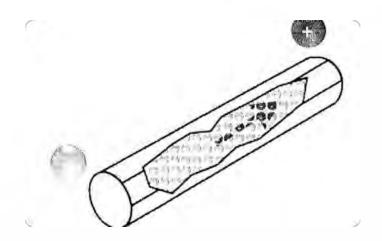
If the voltage is high enough, electricity can pass through almost any insulator.

#### Lightning Example

Lightning is an electric current that passes through long distances of air, which is normally a poor conductor (a good insulator). To do this requires billions of volts of electrical pressure.

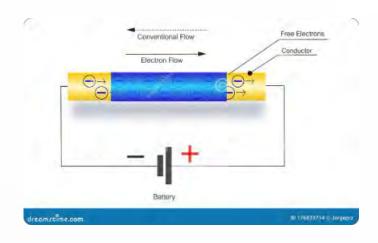
#### **Arcing Phenomenon**

High-voltage electricity can arc or jump across an air gap from one point to another if the voltage between the two points is strong enough.


#### **Safety Precaution**

For this reason, personnel must remain well clear of high-voltage equipment.




# **Current Flow in a Conductor**

To produce a flow of electricity or current in a conductor, make the electrons move in a direction along the conductor by placing opposite (positive and negative) charges on the ends of the conductor. The free negative electrons move toward the positive charge and away from the negative charge.



#### Free Electrons Flow

Free electrons flow in the same direction in a conductor to produce electric current.



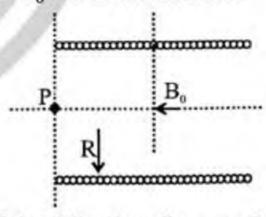
# Electron Movement in Copper

Copper's abundance of free electrons makes it an excellent conductor for electric current.

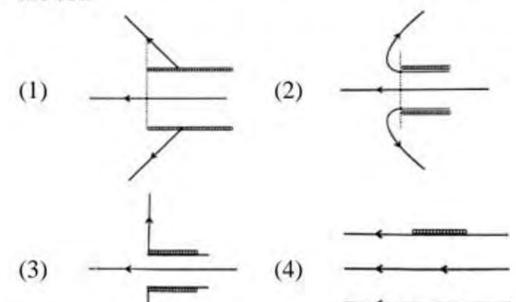
#### **Types of Current**

#### Direct Current (DC)

When current flows in a constant direction, it is a direct current (dc).

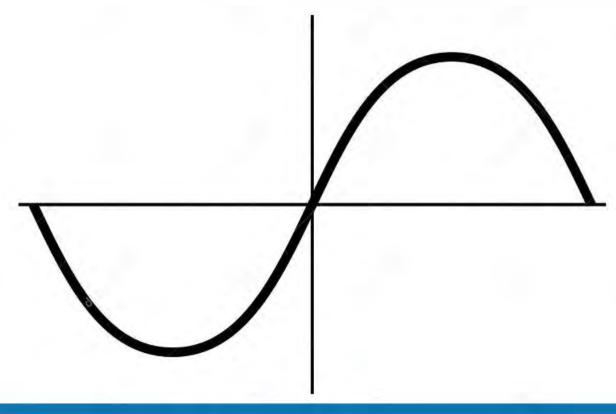

on nt

of


ne

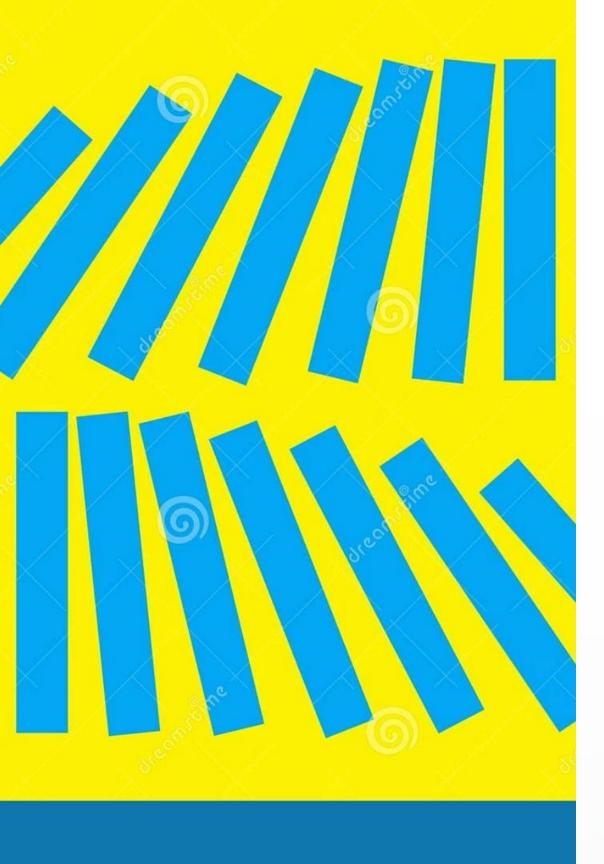
ts

A direct current flows in a solenoid of length L and radius R, (L >> R), producing a magnetic field of magnitude  $B_0$  inside the solenoid.




Which of the following diagrams best describes the magnetic field lines in the vicinity of P at the end of the coil




#### Alternating Current (AC)

Alternating current (ac), on the other hand, regularly reverses direction and occurs during reversal of the polarity of each end of the conductor, which is always the case with house current.



dreamstime.com

ID 299396153 © Mykola Lytvynenko



# Speed of Electric Current



#### **Light Speed Propagation**

The effect of electric current moves down the conductor at the speed of light (297,600 km per second).



#### **Limited Electron Movement**

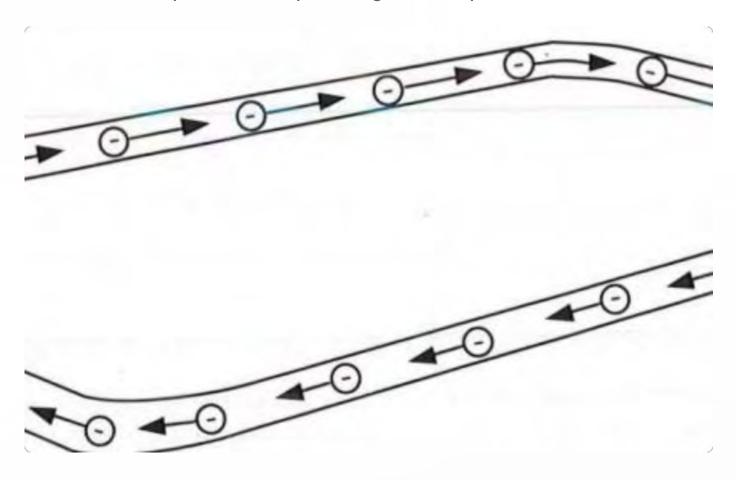
Individual electrons do not move very far in the conductor.



#### **Domino Effect**

As each electron leaves its own orbit and enters another, it repels another electron out of orbit, and so on.




#### Wave-Like Propagation

The rapidly moving current is the impulse of these changes moving along the length of the conductor.

This is similar to the impulse of falling dominoes moving the length of the row, while each domino makes only a slight movement.

# Closed and Open Circuits

Placing a negative charge at one end of the wire repel away electrons to the other end of the wire. Current flows only until enough electrons accumulate at the other end to produce an equal charge. At that point, no further current flows, and there is static electric charge on the conductor.



#### Complete or Closed Circuit

For electric current to flow, there must be opposite charges at the ends of the conductor. Some kind of electrical energy source, such as a battery or generator, supplies these charges.



#### **Open Circuit**

If the circuit breaks (opens) at any point, current stops flowing. An open circuit can accidentally result from breaks or intentionally from switches or disconnection.

# How a Closed Circuit Works



At the negative side of the electrical energy source, electrons are repelled in the wire. At the positive side, the source attracts electrons.

While current flows in the circuit, electrical energy can do work-for example, heating a lamp filament to give light. If the circuit breaks (opens) at any point, current stops flowing.

# Photosystem I (not II)



## **Conventional Flow**



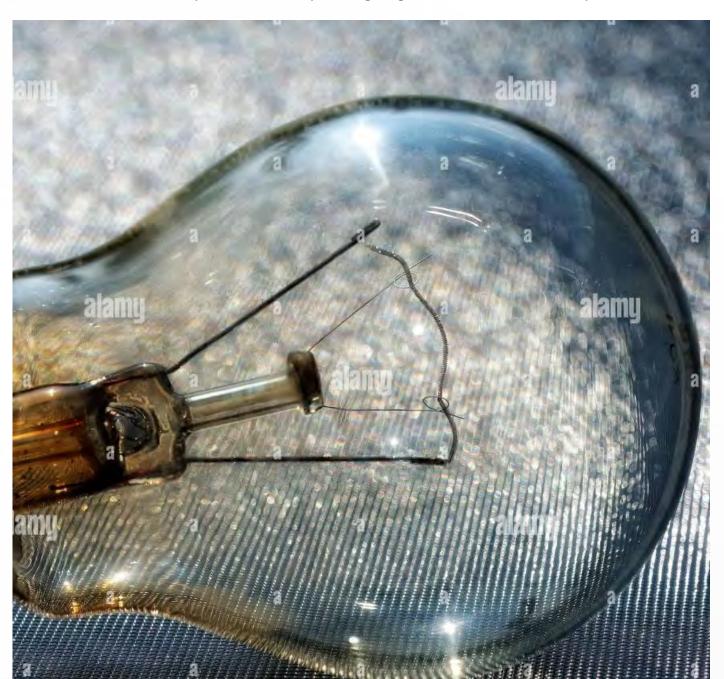
#### **Historical Assumption**

Traditional current flows from positive to negative

#### **Conventional Flow**

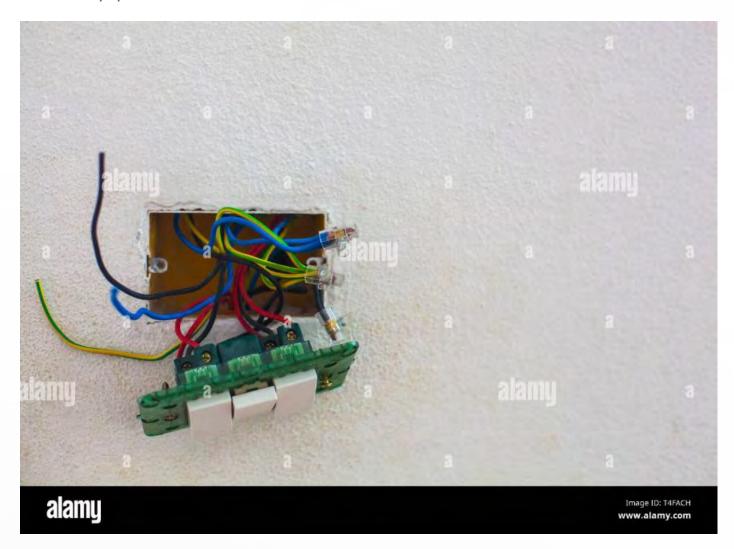
This direction is still commonly used

#### **Electromagnetism Rules**


Based on conventional flow direction

Despite present knowledge about electron-flow, there has been an assumption that traditional current flows from positive to negative. This direction is conventional flow and is still common. For example, the rules for electromagnetism, a topic for later discussion, are based on conventional flow.

## **Open Circuit Examples**


#### **Broken Filament**

When the filament in a lamp breaks, the lamp no longer lights because the circuit is open.



#### Light Switch

When the light switch is in the open position, the lamp no longer lights because the circuit is intentionally opened.



# Useful Effects of Electricity: Heat

When electric current passes through a wire, the temperature of the wire rises, and heat transfer gives off energy. Many household appliances, such as toasters and electric heaters, use this effect.

Good conductors such as copper produce less heat, while poor ones such as tungsten produce a lot of heat when they conduct current.



#### **Toaster**

Electric toasters use resistive heating elements that glow red-hot to toast bread.



#### Space Heater

Electric heaters convert electrical energy into heat energy for warming spaces.



Light Bulb

Incandescent bulbs use tungsten filaments that heat up to produce light.

# Useful Effects of Electricity: Magnetism

Any conductor of electric current acts like a magnet. This interaction between electricity and magnetism is called electromagnetism. When the current stops flowing, the conductor no longer acts as a magnet.

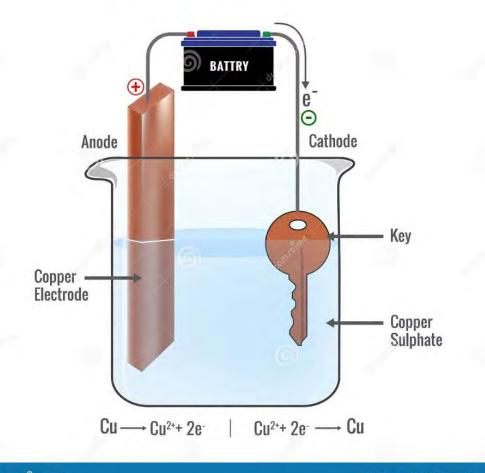






#### Electromagnet

An electromagnet is a type of magnet in which the magnetic field is produced by an electric current.


#### **Electric Motor**

Electric motors use electromagnetism to convert electrical energy into mechanical motion.

#### Relay

Relays use electromagnets to mechanically operate switches, allowing a low-power signal to control a high-power circuit.

#### **Electroplating with copper**



dreamstime.com

ID 255248612 © Nandalal Sarka

# Useful Effects of Electricity: Chemical Changes

The electroplating process uses an electric current to produce a metallic coating on a surface. The electric current acts on a chemical solution, the electrolyte, to deposit coating metal from the electrolyte onto the surface to be plated.

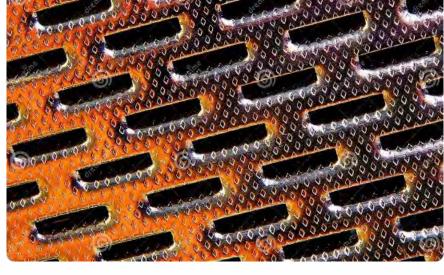
#### Preparation

Object to be plated is connected to negative terminal (cathode)

#### **Electrolyte Bath**

Object is immersed in solution containing metal ions

#### **Current Application**


Electric current causes metal ions to deposit on the object

#### **Finished Product**

A thin, even layer of metal coats the original object

# **Electroplating Applications**

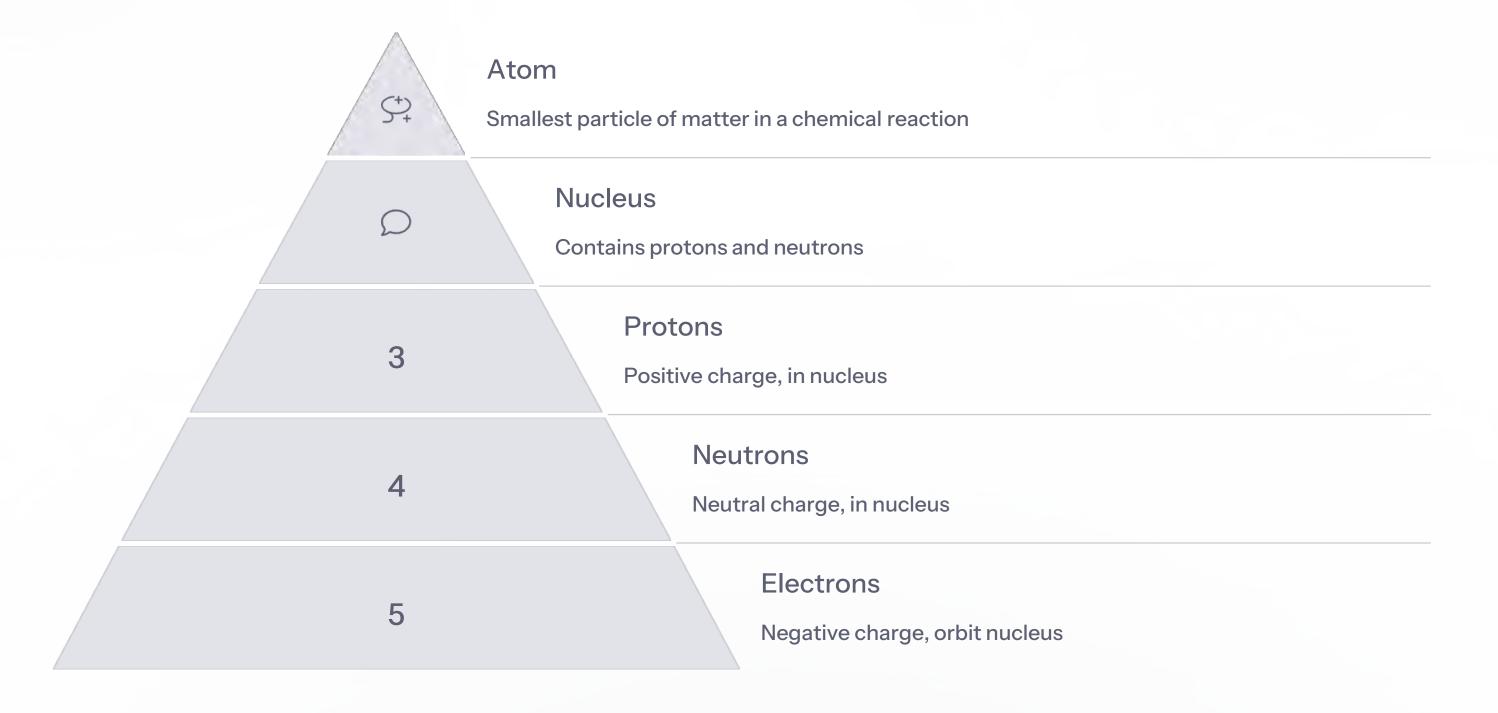






#### Jewelry

Gold plating provides a precious metal finish at a fraction of the cost of solid gold.


#### **Automotive Parts**

Chrome plating provides corrosion resistance and an attractive finish to metal components.

#### Electronics

Nickel plating improves conductivity and corrosion resistance in electronic components.

# **Atomic Structure Review**



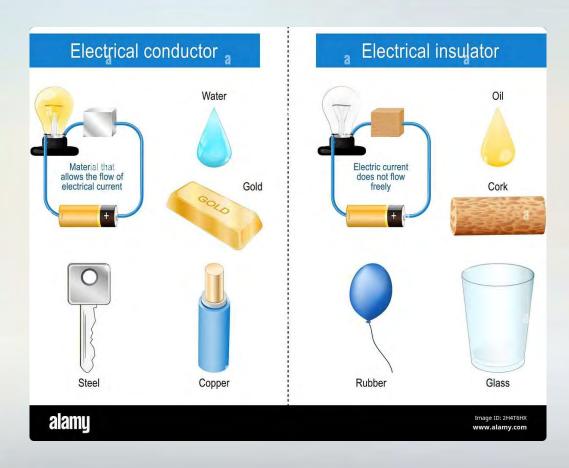
# Electrical Charges Review

**Positive Charge** 

Fewer electrons than protons

+ ⑪

**Negative Charge** 


More electrons than protons

Neutral

Equal electrons and protons

Like charges repel, unlike attract

Attraction/Repulsion



# Conductors vs. Insulators Review

| Property                      | Conductors             | Insulators                |
|-------------------------------|------------------------|---------------------------|
| Free Electrons                | Many                   | Few                       |
| Electrical Energy<br>Transfer | Easy                   | Difficult                 |
| Examples                      | Copper, Aluminum       | Glass, Rubber             |
| Application                   | Wires, Terminals       | Wire Coating,<br>Supports |
| Heat Production               | Less (good conductors) | More (poor conductors)    |

# **Electricity Production Methods Review**



#### Thermoelectricity

Heat application to joined different metals



#### Electromagnetism

Conductor moving through magnetic field

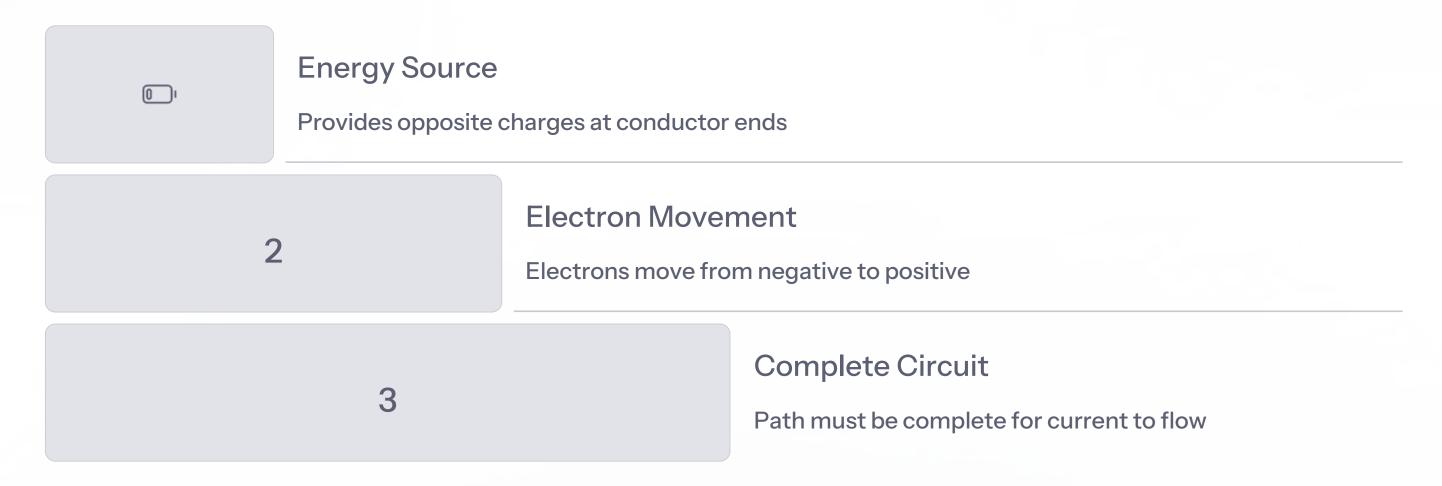


#### Electrochemistry

Chemical reactions in batteries



#### Piezoelectricity


Pressure applied to certain crystals



#### Photoelectricity

Light striking photosensitive materials

# **Current Flow Review**



To produce a flow of electricity or current in a conductor, make the electrons move in a direction along the conductor by placing opposite (positive and negative) charges on the ends of the conductor. The free negative electrons move toward the positive charge and away from the negative charge.

# Useful Effects of Electricity Review

#### Heat

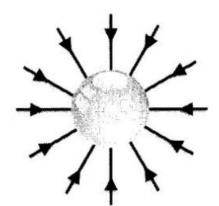
Current passing through a wire raises its temperature, transferring heat energy. Used in toasters, heaters, and incandescent bulbs.

#### Magnetism

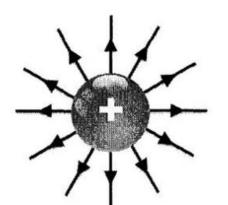
Current-carrying conductors act as magnets (electromagnetism). Used in motors, generators, and relays.

#### **Chemical Changes**

Electric current can produce chemical reactions. Used in electroplating and battery charging.


# Applications of Static Electricity Waste gases without smoke particles charged gates electrostatic spray painting Waste gases containing smoke particles electrostatic precipitator

#### **Electrostatic Fields Review**


#### Negative Charge Fields

Lines of force point toward the negative charge.

#### Lines of force around negative and positive charges



(a) Lines of force around a negative charge



(b) Lines of force around a positive charge

#### Positive Charge Fields

Lines of force radiate outward from the positive charge.

A point positive charge is brought near an isolated conducting sphere (Fig. 1.2). The electric field is best given by

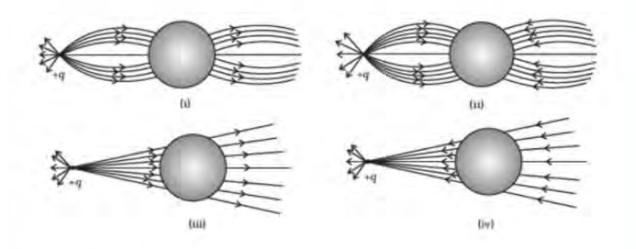
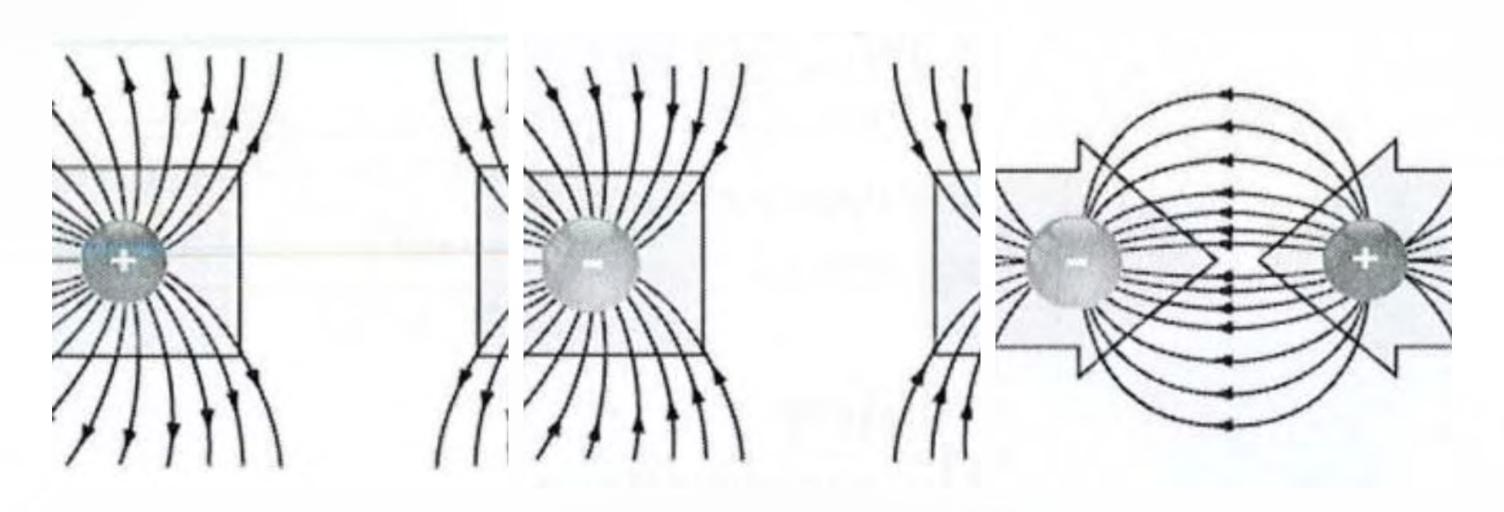




Fig. 1.2

(a) Fig (i) (c) Fig (iii) (b) Fig (ii) (d) Fig (iv)

# **Attraction and Repulsion Review**



The fundamental law of electrical charges states that like charges repel and unlike charges attract.

- Positive charges repel other positive charges
- Negative charges repel other negative charges
- Positive and negative charges attract each other

The strength of these forces depends on the amount of charge and the square of the distance between the charged objects.

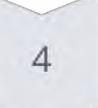
# **Battery Operation Review**



#### **Different Metal Electrodes**

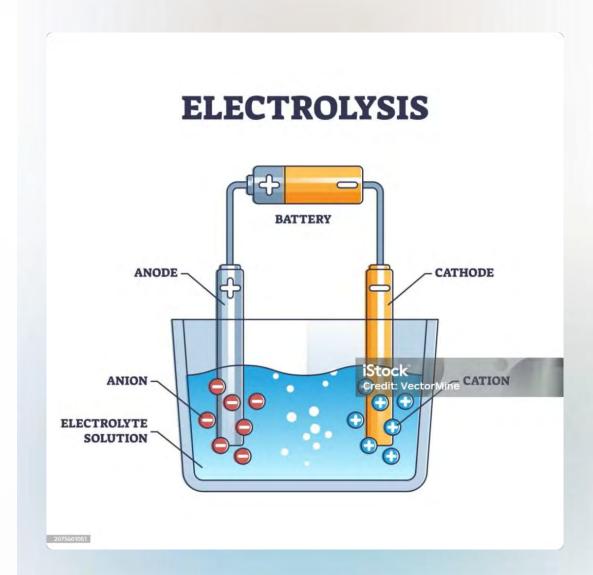
Two different metals are used as electrodes




#### **Electrolyte Solution**

Electrodes are immersed in chemical solution




#### **Electron Transfer**

Chemical action transfers electrons between electrodes



#### **Potential Difference**

Creates voltage between positive and negative terminals



# Figure 2-6 An electrochemical dry cell battery Metal capped carbon rod (positive terminal) Sealing compound Zinc container (Negative terminal) Electrolyte

# Dry Cell Structure Review

Flashlight batteries are dry cells with these components:



#### **Negative Electrode**

The zinc battery container serves as the negative electrode



#### Positive Electrode

A carbon rod in the center of the cell is the positive electrode

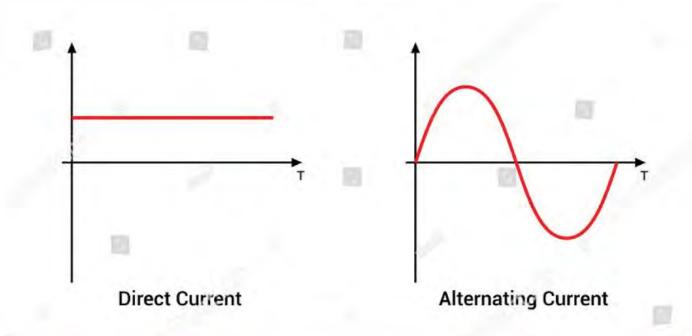


#### Electrolyte Mixture

The space between electrodes contains carbon, manganese dioxide, and electrolyte



#### **Protective Seal**


The top has a seal to prevent evaporation of the electrolyte

### Direct vs. Alternating Current Review

#### Direct Current (DC)

Current flows in a constant direction

- Produced by batteries
- Used in electronics
- Constant polarity



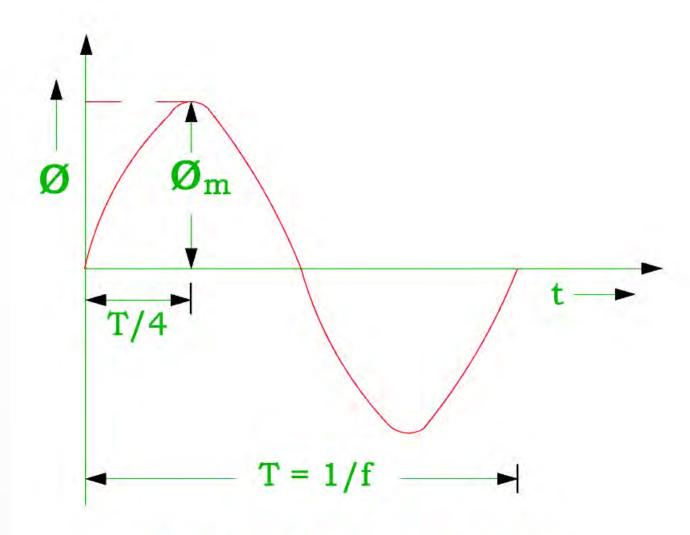
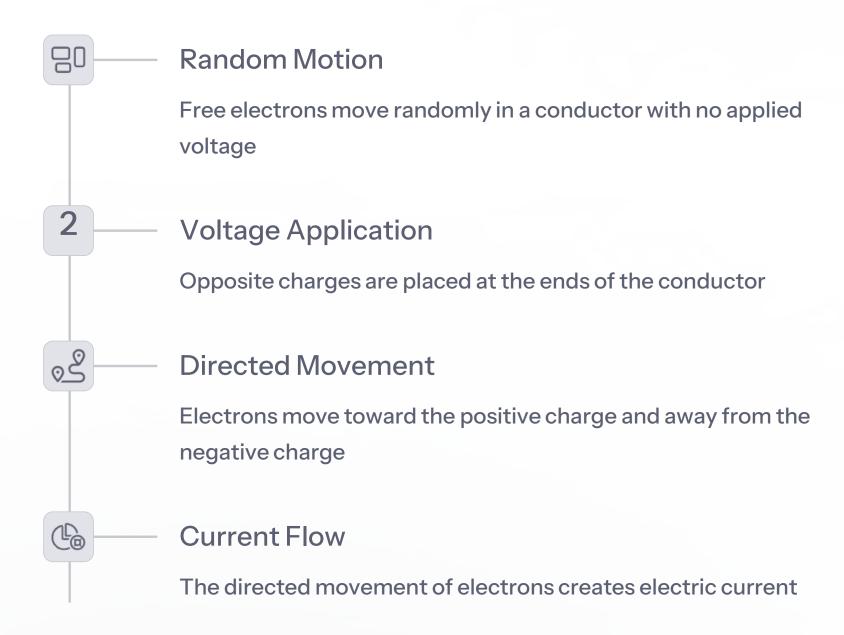

shutterstsck\*

IMAGE ID: 1962230392 www.shuiterstock.com

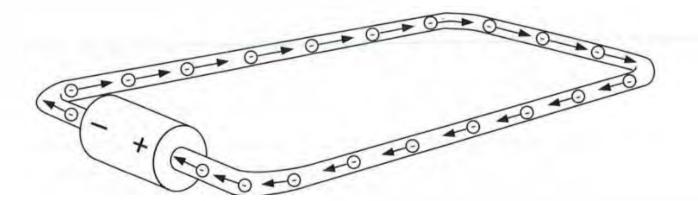
#### Alternating Current (AC)


Current regularly reverses direction

- Standard house current
- Efficient for power transmission
- Polarity constantly reverses



# Animation showing electrons moving randomly and then the movement of electrons through a wire

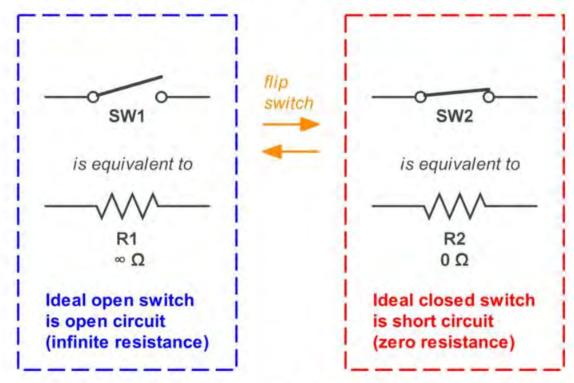

# Electron Movement in Conductors Review



## Closed vs. Open Circuits Review

#### **Closed Circuit**

A complete path for current to flow from the negative terminal of the power source, through the load, and back to the positive terminal.

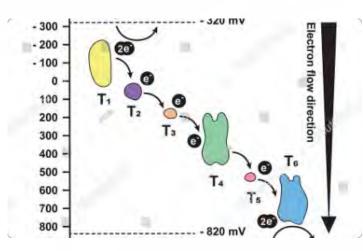



#### **Open Circuit**


A break in the path that prevents current from flowing. Can be intentional (switch) or unintentional (broken wire).

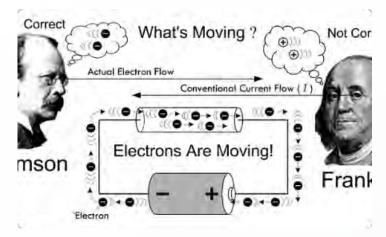
When a circuit is open, no current flows and electrical devices cannot operate.






## Conventional vs. Electron Flow Review




#### **Conventional Flow**

Historically assumed to flow from positive to negative. Still commonly used in many electrical diagrams and explanations.



#### **Electron Flow**

The actual movement of electrons from negative to positive. Represents the physical reality of current flow.



#### Comparison

Despite knowing about electron flow, conventional flow is still used for consistency, especially in electromagnetism rules.

## **Electrostatic Charges Review**

2

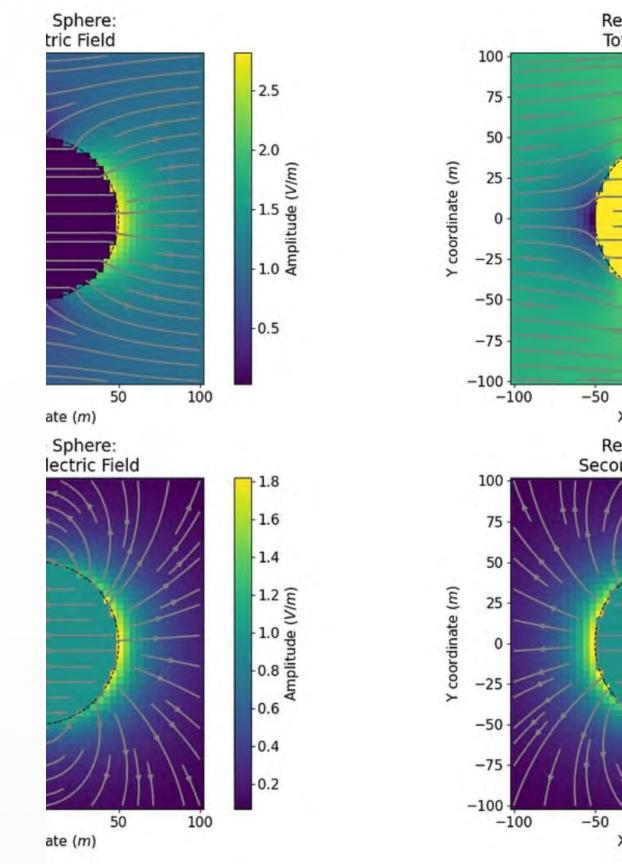
1840

Types of Charges

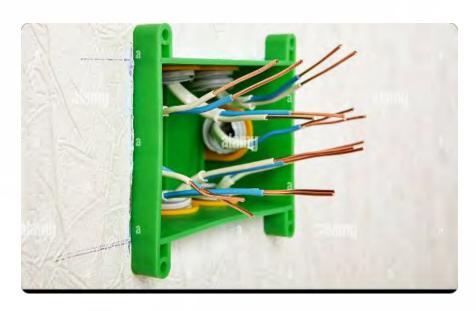
Mass Ratio

Positive and negative electrical charges

Times lighter electrons are than protons


3

#### Size Comparison


Times larger electrons are than protons

Electrostatic charges are stationary electric charges. They create electrostatic fields around them, with forces of attraction between unlike charges and repulsion between like charges.

The strength of these forces depends on the amount of charge and the square of the distance between the charged objects.



## Insulator Applications Review



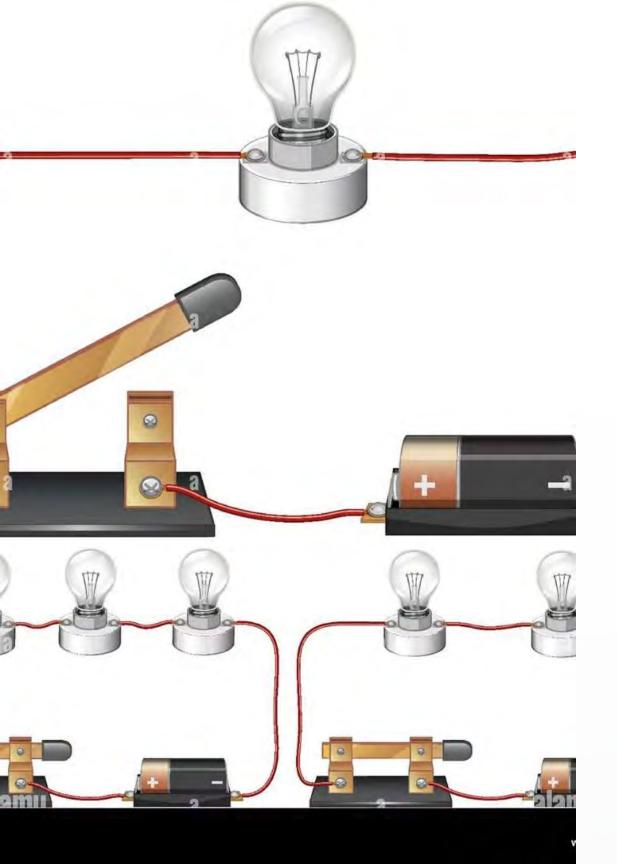




## **Household Wiring**

Household wiring consists of pure copper conductors with a plastic layer of insulation. This insulation provides protection from electric shock and prevents short-circuiting of the system.

## High Voltage Transmission


For very high voltages, porcelain, glass, air, or oil function as insulators. Glass insulators hold conductors away from metal transmission towers.

## Safety Equipment

Insulated tools and protective gear prevent electrical shock when working with live circuits.

## **Useful Effects of Electricity Summary**

| Effect           | Description                                                                                                                                                                                                                                             | Applications                                    |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Heat             | When electric current passes through a wire, the temperature of the wire rises, and heat transfer gives off energy. Good conductors such as copper produce less heat, while poor ones such as tungsten produce a lot of heat when they conduct current. | Toasters, electric heaters, incandescent lights |
| Magnetism        | Any conductor of electric current acts like a magnet. This interaction between electricity and magnetism is electromagnetism. When the current stops flowing, the conductor no longer acts as a magnet.                                                 | Motors, generators, relays, speakers            |
| Chemical changes | The electroplating process uses an electric current to produce a metallic coating on a surface. The electric current acts on a chemical solution, the electrolyte, to deposit coating metal from the electrolyte onto the surface to be plated.         | Electroplating, battery charging, electrolysis  |

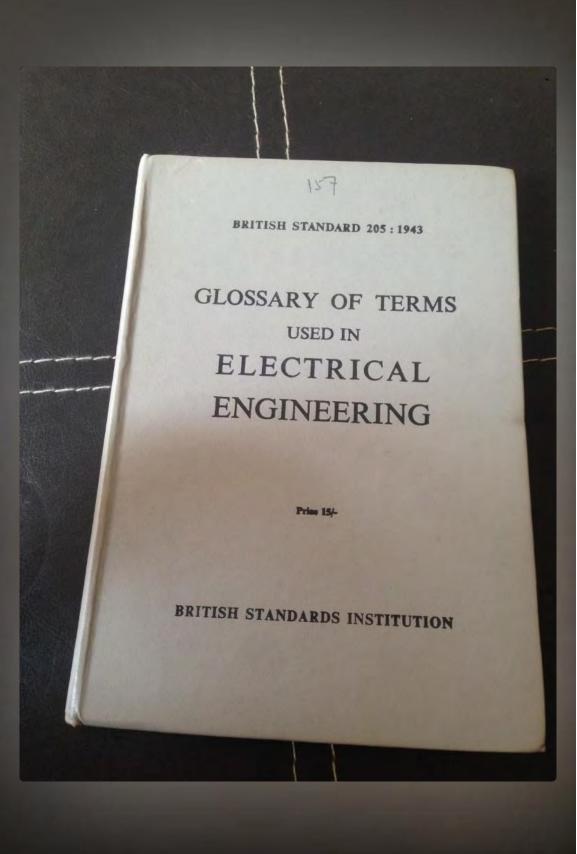


## CSA Unit 5

# Chapter 3 Components and Operation of a Simple Electrical Circuit

The gas technician/fitter requires a basic knowledge of the components and operation of simple electrical circuits in order to connect and troubleshoot the type of electrical equipment encountered in the gas industry. This presentation will explore the components of simple electrical circuits and explain their operation.




## Purpose and Objectives

## Purpose

The gas technician/fitter requires a basic knowledge of the components and operation of simple electrical circuits in order to connect and troubleshoot the type of electrical equipment he/she encounters in the gas industry.

## **Objectives**

- Describe the components of a simple electrical circuit
- Describe the operation of a simple electrical circuit



## **Key Terminology**

| Term                 | Abbreviation (symbol) | Definition                                                                                               |
|----------------------|-----------------------|----------------------------------------------------------------------------------------------------------|
| Electromotive force  | emf                   | Potential difference of an energy source (for example, battery or generator)                             |
| Ohm's law            |                       | States that the current flowing in an electrical circuit is directly proportional to the applied voltage |
| Potential            |                       | Positive or negative, measured at one point with respect to another                                      |
| Potential difference |                       | Difference in potential between any two points in a circuit                                              |
| Resistance           |                       | Opposition that a material offers to the flow of current                                                 |
| Voltage              |                       | Alternative term for potential difference                                                                |
| Voltage drop         |                       | Potential difference across individual loads in a circuit                                                |

## Components of a Simple Electrical Circuit

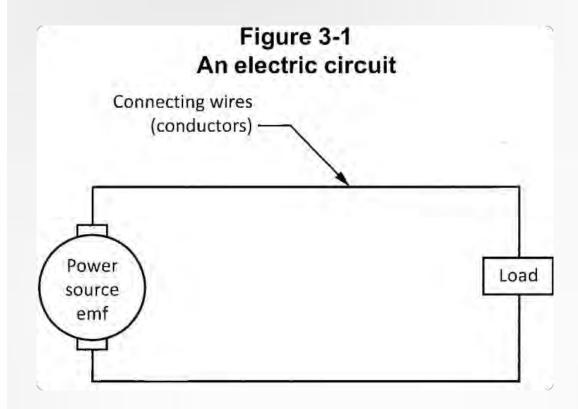


#### **Energy Source**

Such as a battery or a wall plug that provides electrical energy



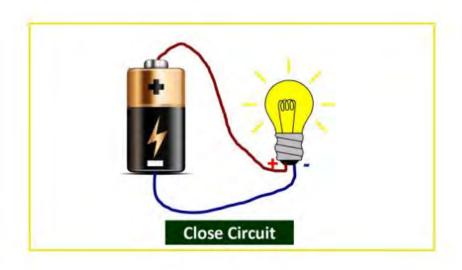
#### Conductors


Connecting wires that provide a path for current flow



#### Load

A device that uses electrical energy to do work


A circuit often has a switch and an overcurrent protective device such as a fuse or circuit breaker.



## Open vs. Closed Circuits

#### **Closed Circuit**

In a closed circuit, the path is complete and current can flow through the circuit.



## **Open Circuit**

In an open circuit, the path is incomplete and current cannot flow.

Opening a circuit is possible through:

- Breakage
- Disconnection from an energy source
- Using a switch



## **Energy Sources and Potential**

Electrical Energy Sources

Supply electrical energy in several ways (e.g., a wet-cell battery produces electrochemical energy)

**Potential Difference** 

The measure of the ability (potential) of a unit of electric charge to do a certain amount of work

Electromotive Force (emf)

The force that drives the current, measured in volts (V)

The difference in potential between two terminals provides the force to drive the current, similar to high and low-pressure points in a fluid piping system.

## Voltage Units

| Voltage         | Equivalent                                                               |
|-----------------|--------------------------------------------------------------------------|
| 1volt (1V)      | 1000 millivolts (= $10^3$ mV)<br>1,000,000 microvolts (= $10^6$ $\mu$ V) |
| 1kilovolt (1kV) | 1000 volts (= 10 <sup>3</sup> V)                                         |
| 1megavolt (1MV) | 1,000,000 volts (= 10 <sup>6</sup> V)                                    |

The sizes of voltages may vary a great deal, so the size of the units used can also vary.



AC curren measuren

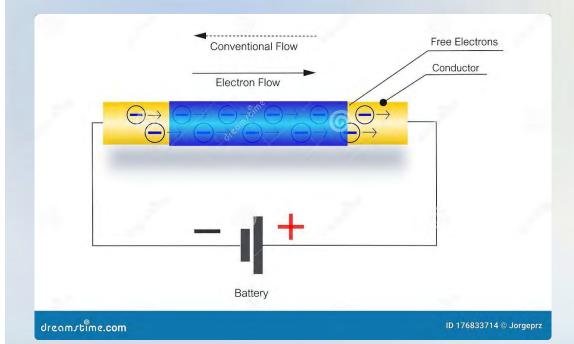
urement

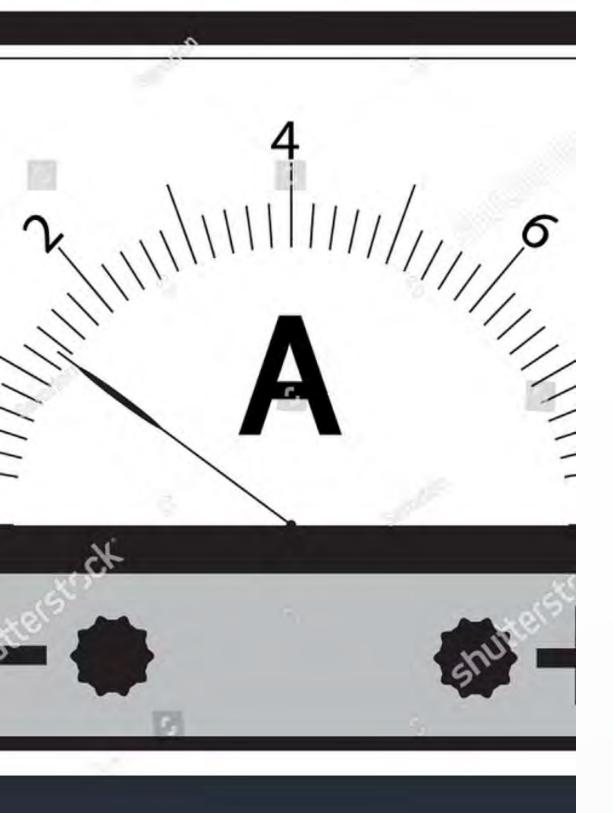
## **Current Flow**



## **Energy Source**

Provides voltage (potential difference)


#### **Current Flow**


Electrons flow toward the positive terminal

#### Load

Uses electrical energy to do work

Electric current flows whenever there is a difference of potential across a circuit. The amount of voltage across the circuit determines how much current can flow through the load. The polarity of the source determines the direction of current flow.





## **Current Units**

| Current      | Equivalent                                                                   |
|--------------|------------------------------------------------------------------------------|
| 1ampere (1A) | 1000 milliamperes (= $10^3$ mA)<br>1,000,000 microamperes (= $10^6$ $\mu$ A) |
| 1000 amperes | 1kiloampere (=1kA)                                                           |

Ampere (A) is a measure of current, which may be quite small or very large.

## **Conductors and Resistance**

#### Conductors

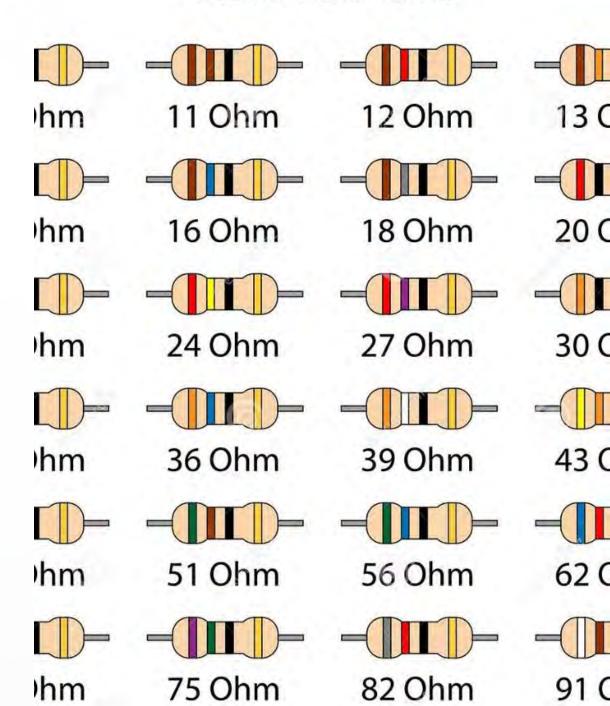
The ease with which a current flows through a conductor varies. In DC circuits, the opposition that a material offers to the flow of current is called resistance.

A conductor in a circuit should have low resistance, allowing maximum current flow. Copper wire is the most commonly used conductor.

#### Resistance

Materials with high resistance oppose the flow of current.

The unit of measurement of resistance is the ohm  $(\Omega)$ .

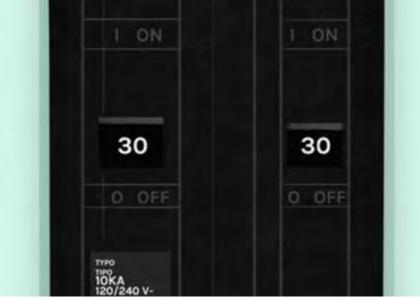

Some resistances are very large, requiring larger units like kilohm ( $k\Omega$ ) or megohm ( $M\Omega$ ).

Some are small, measured in milliohm (m $\Omega$ ) or microhm ( $\mu\Omega$ ).

## **Resistance Units**

| Ohm ( $\Omega$ )           | Equivalent                                     |
|----------------------------|------------------------------------------------|
| 1kilohm (1kΩ)              | 1000 ohms (= $10^3 \Omega$ )                   |
| 1 megohm (1 M $\Omega$ )   | 1,000,000 ohms (= $10^6 \Omega$ )              |
| 1 milliohm (1 m $\Omega$ ) | $0.001  \mathrm{ohms}  (= 10^{-3}  \Omega)$    |
| 1microhm (1μΩ)             | $0.000001  \mathrm{ohms}  (= 10^{-6}  \Omega)$ |

## RESISTOR




om ID 206864375 © H



## HEATER RATED AT 5500 WATTS

- A X V = W
- A = AMPERAGE, V = VOLTAGE, W = WATTAGE
- A = 5500 / 240 = 22.9 AMPS

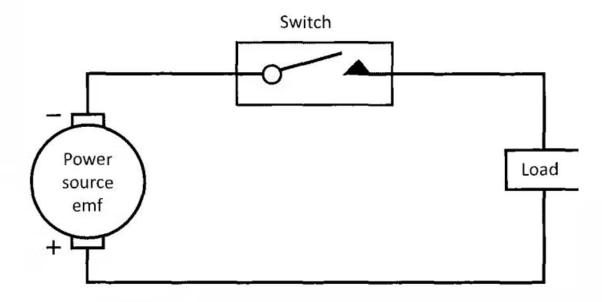


## **Load in Electrical Circuits**

#### Definition

The load uses electrical energy to do useful work such as producing motion, light, or sound or providing heating.

#### Resistance


The load usually has resistance in the electrical circuit. The energy source performs work by driving the current through the resistive load.

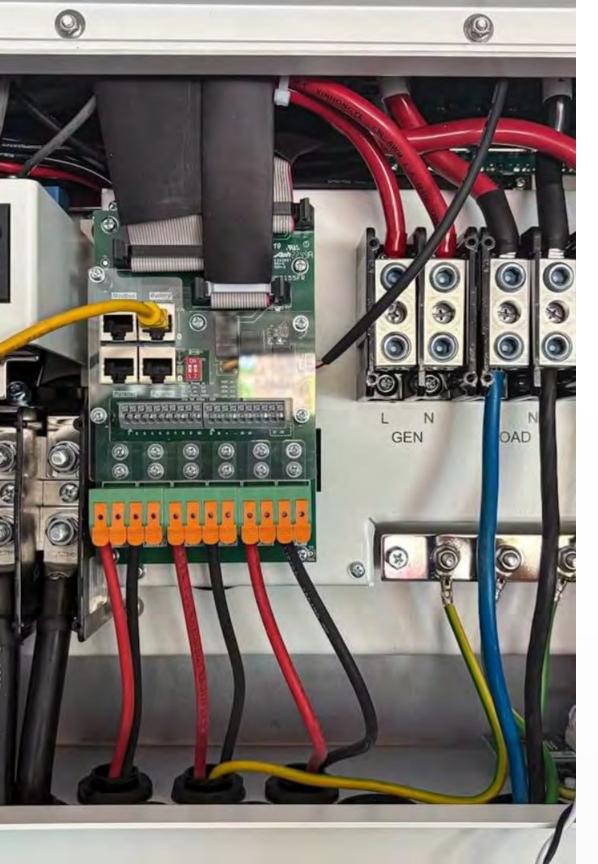
## **Energy Demand**

The term load also refers to the amount of energy demanded from the source. For example, when you increase or decrease the load, it means that the energy source is supplying more or less energy.

## **Switches in Electrical Circuits**

#### Switch opens and closes circuit




#### **Function**

A switch opens or closes an electric circuit as required. The simplest type has two pieces of conducting metal connected to the conductor of the circuit.

#### Relay Contacts

Contacts in an electrical relay function as switches in control circuits. These contacts are either normally closed (NC) or normally open (NO).

When you energize a relay, the contacts switch position to energize or de-energize circuits.



## **Circuit Protective Devices**



#### Fuses

Melt when current exceeds rating, breaking the circuit



#### **Circuit Breakers**

Mechanical switches that trip when overloaded



## Thermal Overloads

Protect against excessive heat



## Magnetic Overloads

Respond to current surges



## Electron Flow in a Circuit

An electric current is the movement of electrons along a conductor. Electrons are extremely small atomic particles that have a negative electric charge.



## Heating of the conductor

Resistance in the conductor creates heat as electrons flow



## Chemical changes

Electron flow can cause chemical reactions



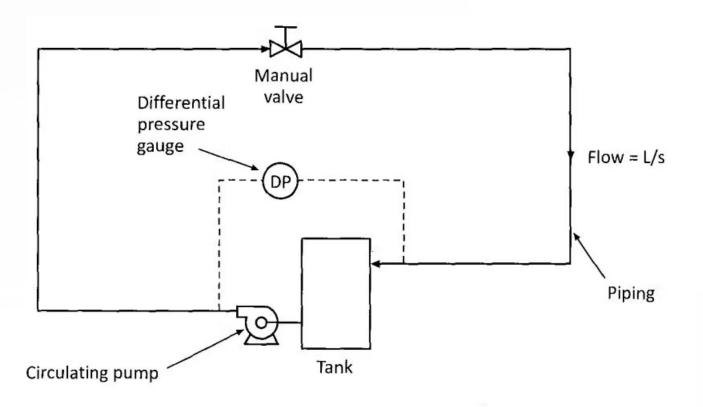
## Production of a magnetic field

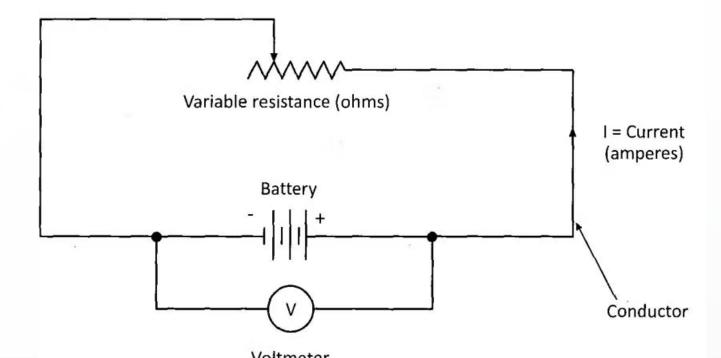
Current flow creates a magnetic field around the conductor

You can use these effects to power machinery and other devices.

## Comparing Water Flow to Electrical Flow

## Water Flow System


- Water pressure (psi or kPa)
- Water flow rate (gal/min or L/s)
- Pipe restrictions (diameter, fittings)
- Pump creates pressure difference


#### **Electrical Circuit**

- Electrical pressure (volts)
- Current flow (amperes)
- Conductor restrictions (resistance in ohms)
- Battery/generator creates potential difference

An electric circuit is like the flow of water through a piping system. For water to flow, there must be a pressure difference. Similarly, for electricity to flow, there must be a potential difference.

## Water Flow vs. Electrical Flow





## Factors Affecting Water Flow

**Pressure Applied** 

The greater the pressure applied to the system, the greater the water flow that will occur at a given resistance.

**Pipe Restrictions** 

Restrictions include length and diameter of pipe, as well as the number of fittings.

Pipe Diameter

More water will flow through larger-diameter pipe when the same pressure is applied.

Pump Size

Maintaining pressure difference with larger pipes requires a larger pump.

The level of water in a tank is 5 m high. A hole of area I cm2 is made at the bottom of the tank. The rate of leakage of water from the hole is

(b) 10<sup>-4</sup> m<sup>3</sup>s<sup>-1</sup>

(e) 10 m<sup>3</sup>s<sup>-1</sup>

(d) 10°2 m3s-1

Water is flowing through two horizontal pipes of different diameters which are connected together. The diameters of the two pipes are 3 cm and 6 cm, respectively. If the speed of water in the narrower tube is 4 ms<sup>-1</sup>, then the speed of water in the wider tube is

(a)  $16 \,\mathrm{ms}^{-1}$  (b)  $1 \,\mathrm{m\,s}^{-1}$  (c)  $4 \,\mathrm{m\,s}^{-1}$  (d)  $2 \,\mathrm{m\,s}^{-1}$ 

45 A block of wood floats in water with (4/5) th of its volume submerged. If the same block just floats in a liquid, the density of the liquid is (in kgm<sup>-3</sup>) (a) 1250 (b) 600 (c) 400

**46** Water flows along a horizontal pipe of non-uniform cross-section. The pressure is 1 cm of Hg, where the velocity is 35 cms<sup>-1</sup>. At a point, where the velocity is 65 cms<sup>-1</sup>, the pressure will be

(a) 0.89 cm of Hg

(b) 0.62 cm of Hg

(c) 0.5 cm of Hg

(d) 1 cm of Hg

47 Three liquids of equal masses are taken in three identical cubical vessels A, B and C. Their densities are  $\rho_A$ ,  $\rho_B$  and  $\rho_C$  respectively but  $\rho_A < \rho_B < \rho_C$ . The force exerted by the liquid on the base of the cubical vessel is

(a) maximum in vessel C (b) minimum in vessel C

(c) the same in all the vessels (d) maximum in vessel A

**48** An object weights  $m_1$  in a liquid of density  $d_1$  and that in liquid of density  $d_2$  is  $m_2$ . The density of the object is

(a) 
$$\frac{m_2 d_2 - m_1 d_1}{m_2 - m_1}$$

(b)  $m_1d_1 - m_2d_2$ 

$$\frac{m_2d_1-m_1d_2}{m_1-m_2}$$

(d)  $\frac{m_1 d_2 - m_2 d_1}{m_1 d_2}$ 

(a) 60 kg 51 A small

man get

52 A raft

weight sink, al (a) 80 l 53 A ston the su

54 A bod in a b

(a) g(1-

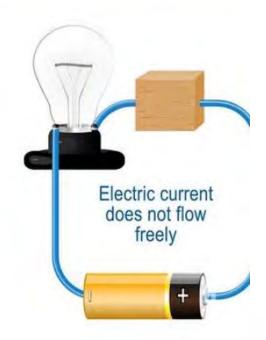
gravi due t (a) zer

(b) eq (c) eq (d) eg

55 The wate of ar

56 A m wan

wat


met

(0) 5

## onductor a



## <sub>a</sub> Electrica





## Factors Affecting Electrical Flow

1 Potential Difference (Voltage)

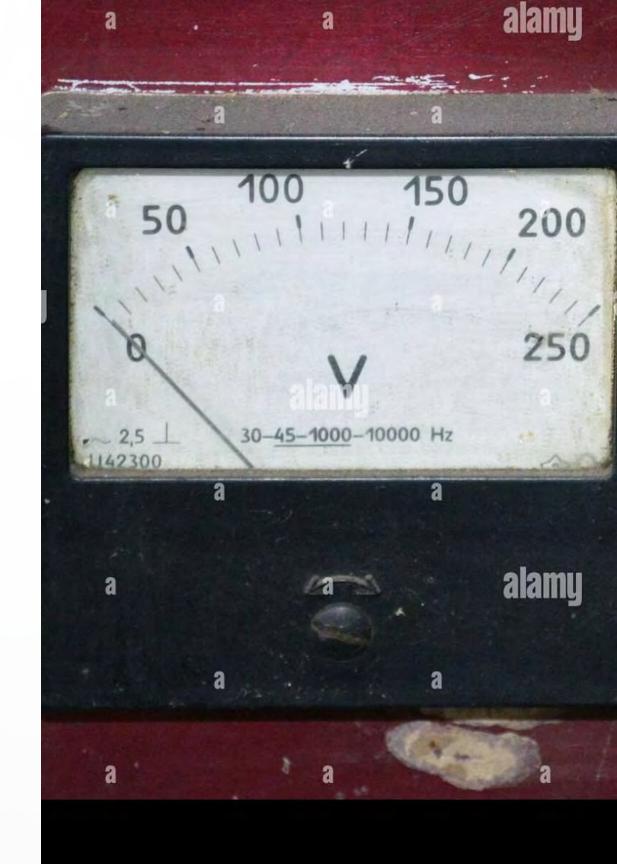
The greater the voltage applied to the circuit, the greater the current flow at a given resistance.

2 Conductor Restrictions

Restrictions include the cross-sectional area of the conductor and the type of material.

3 Conductor Size

More current will flow through larger conductors when the same voltage is applied.


4 Power Source Capacity

Maintaining voltage with larger conductors requires a more powerful energy source.

## **Electrical Pressure Terminology**

| Term                      | Definition                                                                   |
|---------------------------|------------------------------------------------------------------------------|
| Potential                 | Positive or negative, measured at one point with respect to another          |
| Potential difference      | Difference in potential between any two points in a circuit                  |
| Voltage                   | Alternative term for potential difference                                    |
| Electromotive force (emf) | Potential difference of an energy source (for example, battery or generator) |
| Voltage drop              | Potential difference across individual loads in a circuit                    |

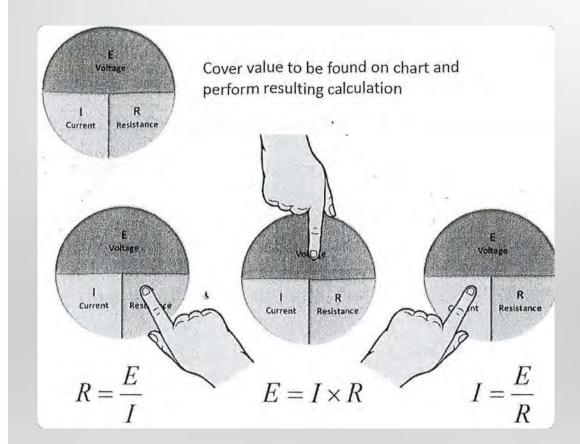
Often, you use voltage interchangeably with potential difference and emf and never in place of the term potential.

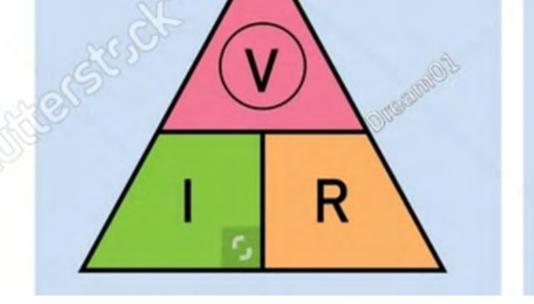


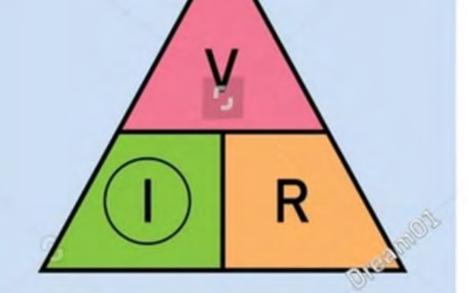
## Ohm's Law

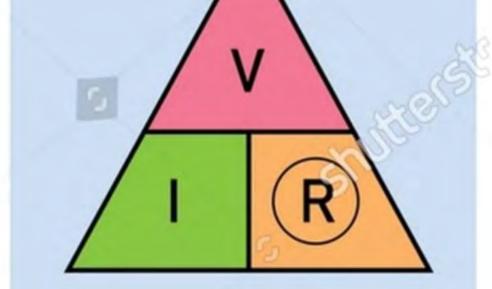
Ohm's law defines the relationship between current flow (amperes), electrical pressure (volts), and resistance in a circuit (ohms):

#### Definition


The current flowing in an electrical circuit is directly proportional to the applied voltage.


#### Relationship


As voltage increases, current increases. As resistance increases, current decreases, and vice versa.


## Simple Expression

It takes an emf of 1 volt to push a current of 1 ampere through 1 ohm of resistance.









## Ohm's Law Equations

Current (I)

I = E/R

Current equals voltage divided by resistance

Resistance (R)

R = E/I

Resistance equals voltage divided by current

Voltage (E)

 $E = I \times R$ 

Voltage equals current multiplied by resistance

When any two of these quantities are known, it is simple to calculate the third. These equations use amperes, volts, and ohms. If you use larger or smaller units, you must convert them first to these basic units.

## Calculating Current Using Ohm's Law

## **Identify Known Values**

In this circuit, we have a 20-volt source of emf and a resistor with resistance of 10 ohms.

Select the Appropriate Formula

To find current, use I = E/R

Substitute Values and Calculate

 $I = 20V/10\Omega = 2A$ 

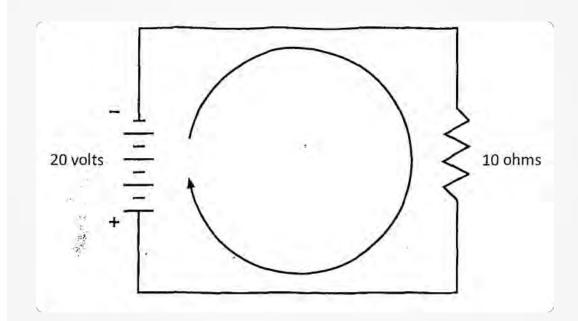
A current of 2 amperes flows in this circuit. You might need to use a calculation like this to see if the current in a circuit will exceed the safe current rating of a resistor.

Figure 3-5
A circuit with a 20-volt source of emf and a 10-ohm resistance

## Calculating Resistance Using Ohm's Law

## **Identify Known Values**

With a 60-volt source of emf and a current of 5 amperes flowing in the circuit.


Select the Appropriate Formula

To find resistance, use R = E/I

Substitute Values and Calculate

 $R = 60V/5A = 12\Omega$ 

The resistance in this circuit is 12 ohms. Resistance and current are inversely proportional. Therefore, to double the current to 10 amperes, halve the resistance by adjusting the rheostat to reduce resistance in the circuit to 6 ohms.



## Work and Power in Electrical Circuits

#### Work

Work is the process of changing one form of energy into another. For example, a motor changes electrical energy into kinetic energy, so it is doing work.

The unit of electrical work is the joule (J). A more common unit of work is the kilowatt hour (kWh).

#### Power

Power is the rate at which work is done. The faster work is done, the greater the power.

The unit of power (P) is watts (W) or horsepower (hp). A watt is the consumed power when 1 ampere of current flows through a potential difference of 1 volt in 1 second.



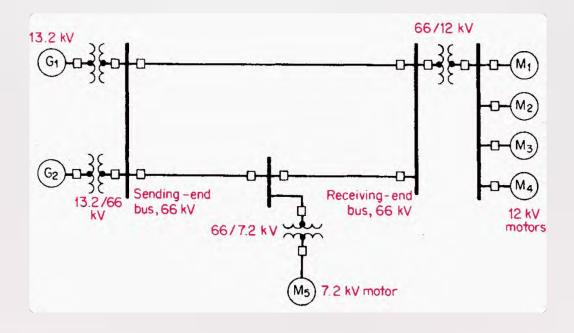
## **Power Units**

| Power           | Equivalent                                             |
|-----------------|--------------------------------------------------------|
| 1watt (1W)      | 1 joule/second (1 J/s) 0.00134 horsepower (0.00134 hp) |
| 1kilowatt (1kW) | 3413 Btu/h                                             |
| 1hp             | 746 W                                                  |
| 1kilowatt (1kW) | 1000 W (= 10 <sup>3</sup> W)                           |
| 1megawatt (1MW) | 1,000,000 W (= 10 <sup>6</sup> W)                      |

## Power in Water and Electrical Systems

## Water System Power

The power of a pump is a function of the pressure that the pump has developed and the flow of water.


A more powerful pump is needed to develop higher pressure or to pump more water through the system.

## **Electrical System Power**

In electric circuits, power is a function of current flow and applied voltage.

Power increases if you increase the current or voltage.

Maintaining flow with large conductors and low resistance requires a more powerful battery.



## Power Calculation in DC Circuits

#### **Basic Formula**

Power in watts = (current in amperes) × (voltage in volts)

 $P = I \times E$ 

#### **Derived Formulas**

E = P/I

I = P/E

## **Example Calculation**

If voltage is 60 volts and current is 5 amperes:

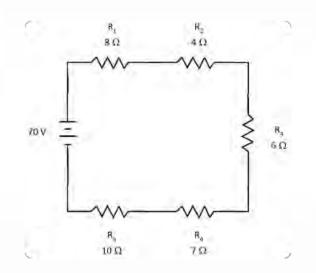
 $P = 5A \times 60V = 300W$ 

Therefore, the power of this circuit is 300 watts.

## 

## **Series Circuits**

## Definition


Circuits that have only one possible path for the current flow. The same amount of current flows through every part of the circuit.

## Arrangement

The parts of the circuit follow one after the other in series in a single loop.

## Example

Older forms of Christmas tree lights are connected in series. Each lamp is a resistive load. If one lamp burns out, the entire string goes out because the series circuit has been broken.



## Voltage Drop in Series Circuits

**Voltage Drop Definition** 

As electrons move from the negative to the positive terminal, they lose energy to the circuit resistance. This occurrence is voltage drop.

Total Voltage Drop

Total voltage drop in a circuit equals the applied voltage of the energy source. This is true for circuits with one load or 20 loads.

## Multiple Loads

If there are several loads, some voltage drop occurs across each load. The same current passes through them all, so the voltage drop across each load is proportional to the resistance of that load.

## Calculating Voltage Drop in Series Circuits

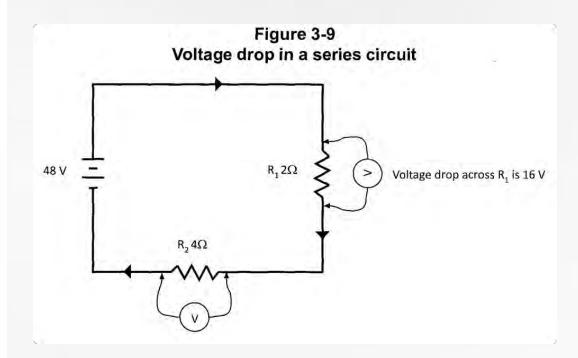
#### **Identify Circuit Values**

A series circuit has a total voltage of 48 volts and contains a 2-ohm resistor and a 4-ohm resistor.

#### Calculate Total Resistance

Total resistance is  $2\Omega + 4\Omega = 6\Omega$ 

#### Calculate Current


 $I = E/R = 48V/6\Omega = 8A$ 

#### Calculate Individual Voltage Drops

Voltage drop across 2-ohm resistor:  $E2 = I \times R = 8A \times 2\Omega = 16V$ 

Voltage drop across 4-ohm resistor: E4 = I  $\times$  R = 8A  $\times$  4 $\Omega$  = 32V

Note: The total voltage drop in the series circuit (48V) is the sum of the voltage drops across the two resistors (16V + 32V).



### **Parallel Circuits**

#### Definition

If some parts of a circuit are connected in parallel, the current is not the same in all parts of the circuit.

#### **Circuit Continuity**

If one branch of a parallel circuit becomes open, current still flows through the other branches. For example, ordinary house lamps are connected in parallel; if one burns out, the rest stay lit.

#### **Current Flow**

Current flows through more than one complete path. These paths are called branches. The supply voltage is common to each branch.

#### **Energy Sources**

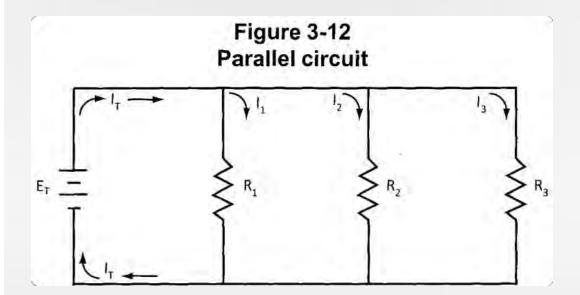
Energy sources as well as loads may be connected in parallel. Sources connected in parallel maintain the same terminal voltage, but supply greater amounts of current.

### **Current Flow in Parallel Circuits**

Multiple Paths

In a parallel circuit, there are multiple possible complete paths for the current to flow through between the terminals.

Current Distribution


The sum of the currents in each branch equals the supply current.

Branch Failure

If one load burns out, current can still flow through the other branches.

Source Disconnection

If the energy source is disconnected, no current flows in any of the branches.

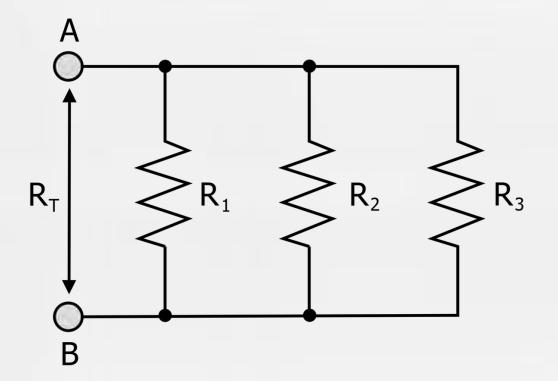


# Resistance in Parallel Circuits

## Total Resistance Formula

In a parallel circuit, you can calculate the total resistance (RT) using the following formula:

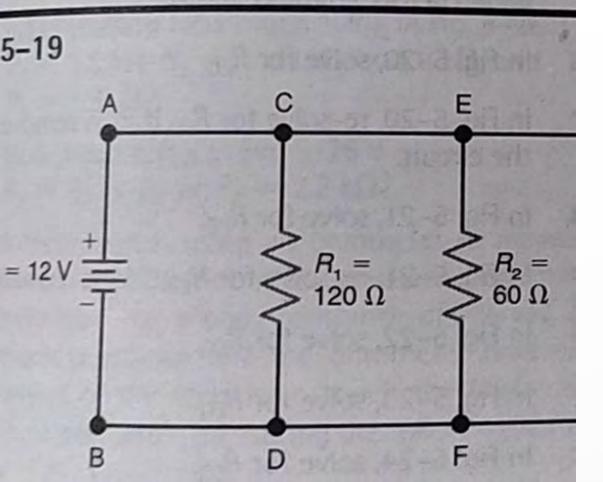
1/RT = 1/R1 + 1/R2 + 1/R3 + ...


#### **Alternative Calculation**

of a parallel circuit are known, you can calculate the total resistance from Ohm's law:

RT = ET/IT

#### **Effect on Circuit**


When resistances are connected in parallel, they reduce overall opposition to current flow.



## ON 5-1 THE APPLIED VOLTAGE VAIS THE ACROSS PARALLEL BRANCHES

III MultiSim In Fig. 5–19, how much voltage is across points

- a. A and B?
- Cand D?
- E and F?
- . G and H?



## Voltage in Parallel Circuits

#### Common Voltage

Parallel loads are connected directly across the same energy source.
This means that, when loads are connected in parallel, the entire source voltage is applied across each branch.

#### **Key Feature**

This is the most important and useful feature of a parallel circuit, because all loads are supplied with a common voltage.

#### **Current Distribution**

The current in each branch is inversely proportional to the resistance of the load in the branch (Ohm's law). Branches with less resistance carry more current and vice versa.

## Example of Parallel Circuit Calculation

## Figure 3-13 Parallel circuit showing current flow through branches

#### **Initial Circuit**

In a simple circuit with a 6-volt power source and a resistance of 3 ohms, a current of 2 amps flows.

#### Adding Parallel Resistance

Another load, with a resistance of 4 ohms, is connected in parallel with the first one.

#### **Current Through First Resistor**

A current of 2 amperes still flows through the 3-ohm resistor.

#### **Current Through Second Resistor**

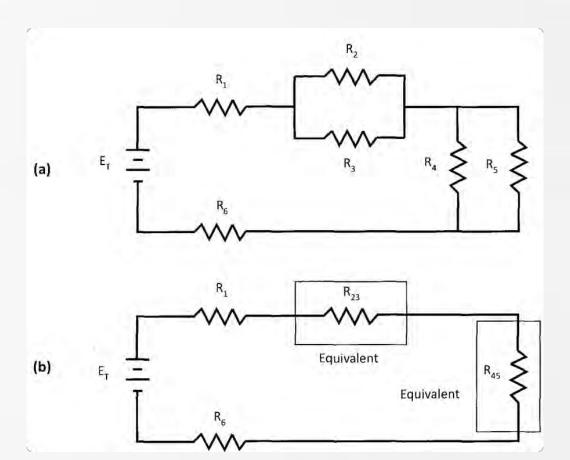
A current of 1.5 amperes now also flows through the 4-ohm resistor.

#### **Total Current**

Total current flow (IT) in the circuit has increased to 3.5 amperes.

## Series-Parallel Circuits

#### Definition


Circuits that combine series and parallel connections are called series-parallel circuits.

#### **Analysis Approach**

You can systematically break down series-parallel or combination circuits into series and parallel components.

#### Applicable Laws

The same laws that apply to individual series and parallel circuits are applicable to the analysis of series-parallel circuits.

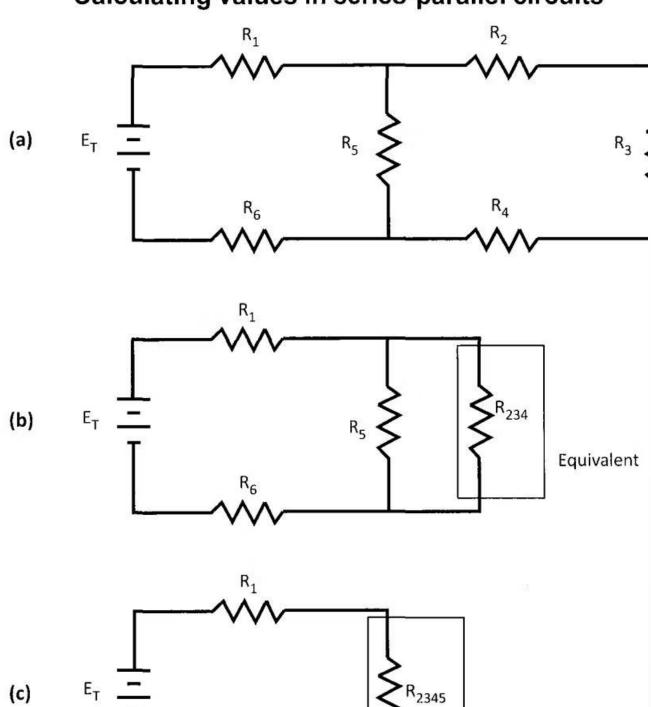


## **Example of Series-Parallel Circuit**

#### Circuit Structure

In the series-parallel circuit in Figure 3-14a:

- Resistors R2 and R3 (the first parallel component) are in parallel, but only with each other.
- Resistors R4 and R5 (the second parallel component) are also in parallel, but only with each other.
- These two parallel components of the circuit are in series with one another and with resistors R1 and R6.


#### **Equivalent Circuit**

To analyze this circuit:

- Calculate parallel resistors R2 and R3 as an equivalent single resistance (R23).
- Calculate the other parallel component (R4 and R5) as a single equivalent resistance (R45).
- After substituting the two pairs of parallel resistances with their equivalent resistances, you have a simple series circuit.

#### Calculating Circuit Resistance in Series-Parallel Circuits

Figure 3-15
Calculating values in series-parallel circuits



## Calculating Current in Series-Parallel Circuits

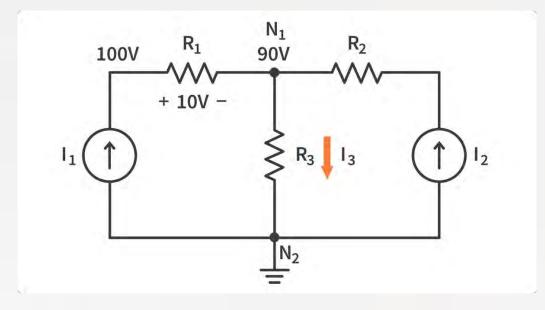
#### **Determine Total Resistance**

Once you determine the total circuit resistance, you can calculate the total line current by using Ohm's law  $(I = E \div R)$ .

#### Calculate Voltage Drops

Calculate the individual voltage drops across the resistances using the following equations:

$$E1 = IT \times R1$$


$$E2345 = IT \times R2345$$

$$E6 = IT \times R6$$

#### Verify Total Voltage

The sum of E1 + E2345 + E6 = ET.

|              | Series                                                                                       | Parallel                                                                                                                   |
|--------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| How it looks | $V_s$ $I_s$ $R_2$ $R_3$                                                                      | $V_s$ $R_1 \leq R_2 \leq R_3 \leq$                                                                                         |
| Voltage      | $V_{s} = V_{1} + V_{2} + V_{3}$ $V_{1} = I_{s}R_{1}; V_{2} = I_{s}R_{2}; V_{3} = I_{s}R_{3}$ | $V_{\rm S} = V_1 = V_2 = V_3 = I_{\rm S} R_{eq}$                                                                           |
| Current      | $I_s = I_1 = I_2 = I_3 = \frac{V_s}{R_{eq}}$                                                 | $I_{s} = I_{1} + I_{2} + I_{3}$<br>$I_{1} = \frac{V_{s}}{R_{1}}; I_{2} = \frac{V_{s}}{R_{2}}; I_{3} = \frac{V_{s}}{R_{3}}$ |
| Resistance   | $R_{eq} = R_1 + R_2 + R_3$                                                                   | $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$                                                         |
| Features     | If one components burns, the circuit becomes inactive and current flow stops                 | If one component burns current stops only through that branch rest part works fine                                         |



# Calculating Branch Currents in Series-Parallel Circuits

#### Use Voltage Drop

You can use the voltage drop E2345 to calculate the branch currents.

#### Equal Voltage in Parallel Branches

For the parallel component of this series-parallel circuit, the voltage drops across the two branches are the same.

#### Calculate Branch Currents

1234 = E2345 ÷ R234

 $15 = E2345 \div R5$ 

#### **Verify Total Current**

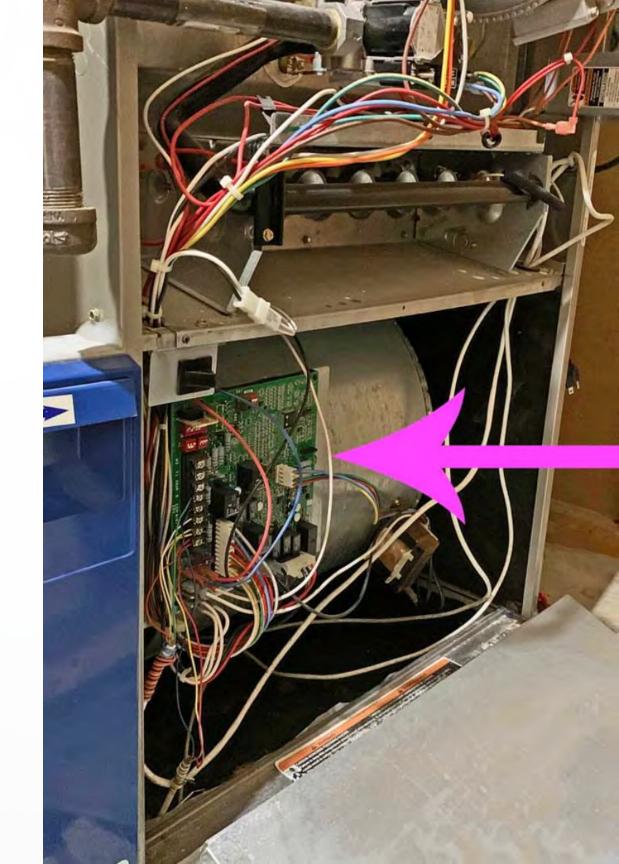
IT = I5 + I234 for the parallel portion.

## Practical Application: Electrical Circuits in Gas Equipment

#### Gas Furnaces

Modern gas furnaces use electrical circuits for ignition, fan control, and safety systems.

#### **Gas Water Heaters**


Electronic ignition systems and temperature controls use simple electrical circuits.

#### **Gas Stoves**

Electronic ignition, timers, and temperature controls all rely on electrical circuits.

#### Gas Detectors

Safety devices that detect gas leaks use electrical circuits to trigger alarms.



## Troubleshooting Electrical Circuits in Gas Equipment



#### **Verify Power Supply**

Check that the equipment is receiving proper voltage



#### Inspect for Visible Damage

Look for burned components, loose connections, or damaged wires



#### **Test Components**

Use a multimeter to test resistance, voltage, and continuity



#### Repair or Replace

Fix connections or replace faulty components



#### **Verify Operation**

Test the equipment to ensure proper function

## Safety Considerations When Working with Electrical Circuits



#### **Disconnect Power**

Always disconnect the power source before working on any electrical circuit.



#### **Use Proper Tools**

Use insulated tools and appropriate test equipment when working with electrical circuits.



## Wear Protective Equipment

Use safety glasses and insulated gloves when appropriate.



#### Follow Codes and Standards

Adhere to local electrical codes and manufacturer's specifications.



#### **Proper Training**

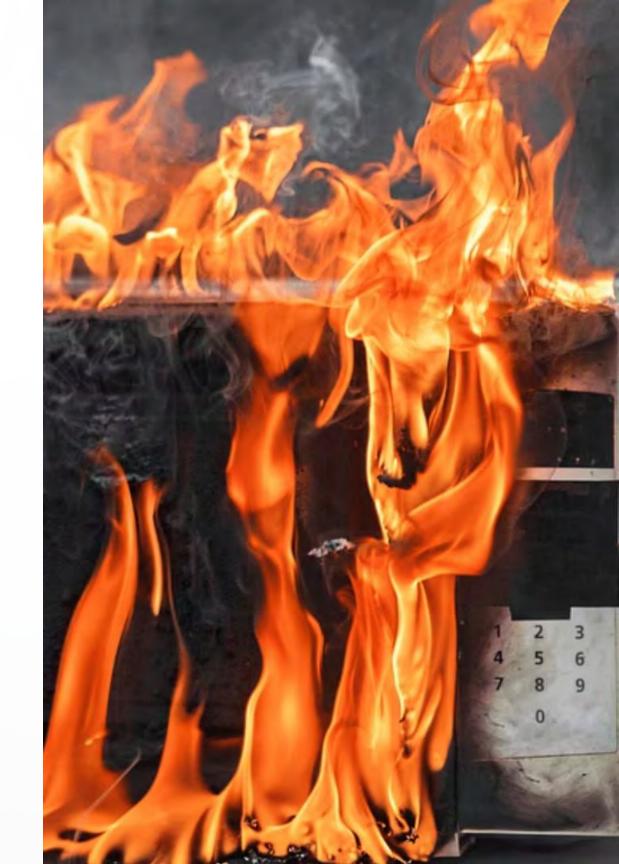
Ensure you have the proper training and certification before working on electrical systems.

# Common Electrical Problems in Gas Equipment

#### Faulty Ignition Systems

Electronic ignition systems may fail due to worn electrodes, damaged wiring, or control board issues.

#### **Thermostat Problems**


Thermostats can develop open circuits, short circuits, or calibration issues.

#### Fan Control Failures

Fan motors and control circuits may develop open circuits or short circuits.

#### Safety Circuit Malfunctions

Flame sensors, limit switches, and pressure switches can fail, causing the equipment to shut down.



## Testing Electrical Components in Gas Equipment

#### **Continuity Testing**

Used to check if a circuit is complete or if there is a break in the circuit.

- 1. Disconnect power to the circuit
- 2. Set multimeter to continuity or resistance mode
- 3. Connect probes to the component terminals
- 4. A reading of zero or near-zero ohms indicates continuity

#### **Voltage Testing**

Used to verify if the correct voltage is present at various points in the circuit.

- 1. Set multimeter to AC or DC voltage mode
- 2. Connect probes to test points
- 3. Compare reading to expected voltage
- 4. Significant deviations indicate problems

## Resistance Testing in Gas Equipment

#### **Disconnect Power**

Always ensure the circuit is de-energized before testing resistance.

#### Set Multimeter

Set the multimeter to the appropriate resistance range (ohms).

#### **Isolate Component**

Disconnect at least one end of the component from the circuit to get an accurate reading.

#### Measure Resistance

Connect the multimeter probes to the component terminals and read the resistance value.

#### Compare to Specifications

Compare the measured resistance to the manufacturer's specifications to determine if the component is functioning properly.

## Electrical Diagrams for Gas Equipment

#### Types of Diagrams

- Wiring diagrams show the actual wire connections
- Schematic diagrams show the electrical function using symbols
- Ladder diagrams show the control circuit in a simplified format

#### **Reading Diagrams**

- Identify components using the legend
- Trace circuits from power source to load
- Understand the function of switches and controls
- Identify potential points of failure



## Electrical Components in Gas Equipment



#### **Thermostats**

Control temperature by opening or closing circuits based on temperature changes



#### **Fan Motors**

Provide air circulation for combustion and heat distribution



#### **Ignition Systems**

Generate sparks or heat to ignite gas



#### Safety Controls

Monitor operation and shut down equipment if unsafe conditions occur

## Relays and Contactors in Gas Equipment

#### Relays

Electromechanical switches that use a small current to control a larger current.

#### Components:

- Coil Electromagnet that creates magnetic field when energized
- Contacts Normally open (NO) or normally closed (NC)
- Armature Moves contacts when coil is energized

#### Applications in Gas Equipment

Relays are used in gas equipment for:

- Fan control
- Ignition sequence control
- Safety circuit operation
- Valve operation



## Transformers in Gas Equipment

**Function** 

Transformers convert high voltage (typically 120V or 240V) to lower voltages (typically 24V) for control circuits.

Components

Primary winding, secondary winding, and iron core.

Applications

Used to power thermostats, control boards, and other low-voltage components in gas equipment.

Testing

Check input and output voltages with a multimeter to verify proper operation.

## Control Boards in Modern Gas Equipment

#### **Function**

Electronic control boards manage the operation of modern gas equipment, controlling ignition, monitoring safety systems, and regulating performance.

#### Components

Microprocessors, relays, transistors, capacitors, resistors, and integrated circuits.

#### **Diagnostics**

Many control boards have LED indicators or digital displays that provide error codes to help diagnose problems.

#### **Testing**

Testing control boards often requires specialized knowledge and equipment. Many technicians replace the entire board rather than attempting to repair individual components.





#### **Various Types Of Gas Sensors**

#### Integrated Infra-Red (INIR) Sensors

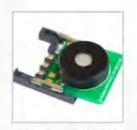




**VQ600 Series** 

Indoor Air Quality Sensor System








TC sensor Elements



Catalytic Pellistor

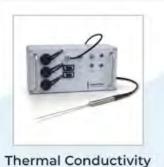






**Electrochemical Sensors** 




IR Sensors



**DUAL Gas Infrared** Sensors



Metal Oxide Sensors



Sensors

Sensors in Gas Equipment





Monitor temperature at various points in the system



#### Flame Sensors

Detect the presence of a flame to ensure safe operation



Pressure **Switches** 

Monitor air or gas pressure to ensure proper combustion



#### **Gas Detectors**

Detect gas leaks and trigger safety shutdowns

## Electrical Safety Devices in Gas Equipment



#### **High Limit Switches**

Shut down equipment if temperature exceeds safe limits



#### **Pressure Switches**

Ensure proper air flow for combustion



#### Flame Rollout Switches

Detect flames outside the combustion chamber



#### **Timing Circuits**

Control ignition sequence and ensure proper purge cycles



#### **Fuses and Circuit Breakers**

Protect against electrical overloads

## Wiring Practices for Gas Equipment

#### Follow Manufacturer's Diagrams

Always refer to the manufacturer's wiring diagrams when installing or servicing equipment.

#### Use Proper Wire Gauge

Select wire size based on the current requirements and length of the run.

#### **Secure Connections**

Ensure all connections are tight and secure to prevent resistance and overheating.

#### **Protect Wiring**

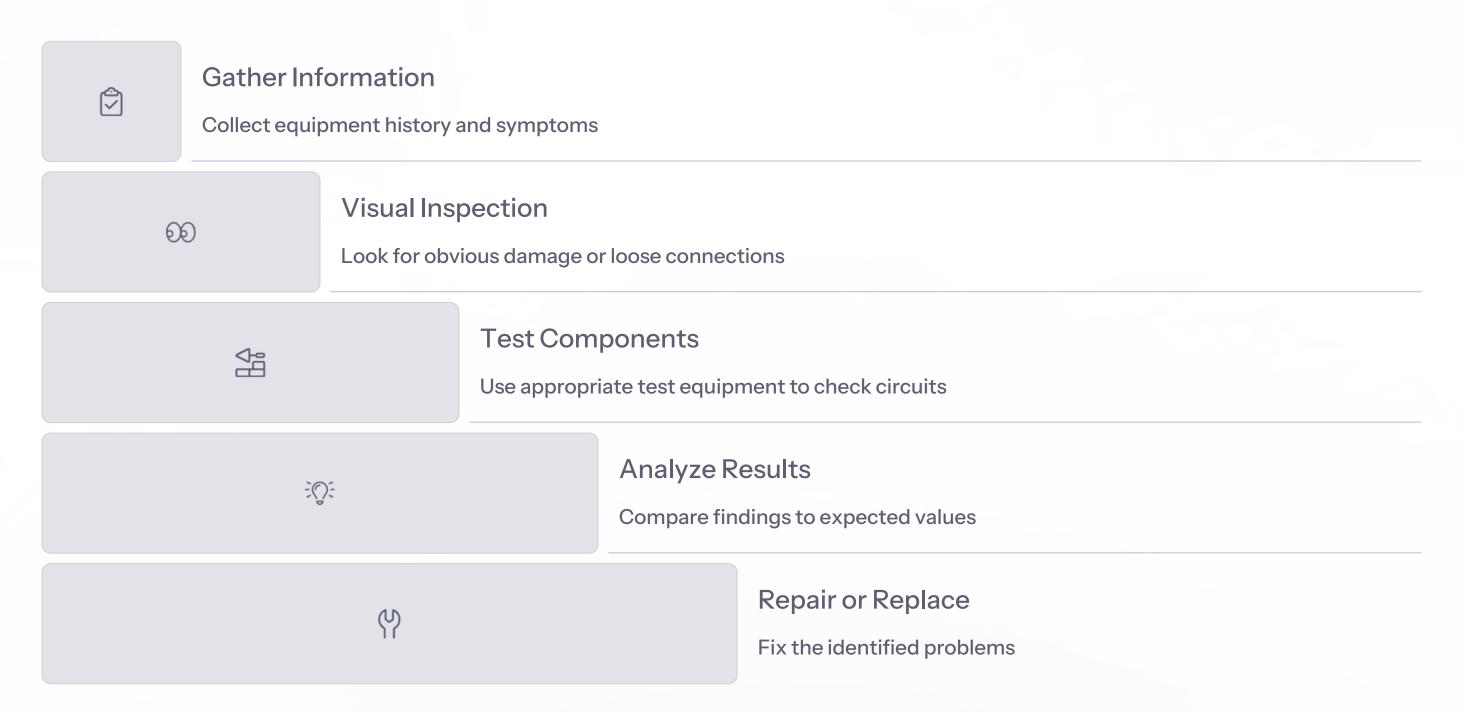
Use conduit or other protection for wires that may be exposed to damage.

#### **Label Wires**

Clearly label wires to facilitate future troubleshooting and service.

## Electrical Testing Equipment for Gas Technicians










Gas technicians should be familiar with various electrical testing equipment to diagnose and troubleshoot electrical problems in gas equipment.

## Electrical Troubleshooting Procedure



# Summary: Components and Operation of Simple Electrical Circuits

#### **Energy Source**

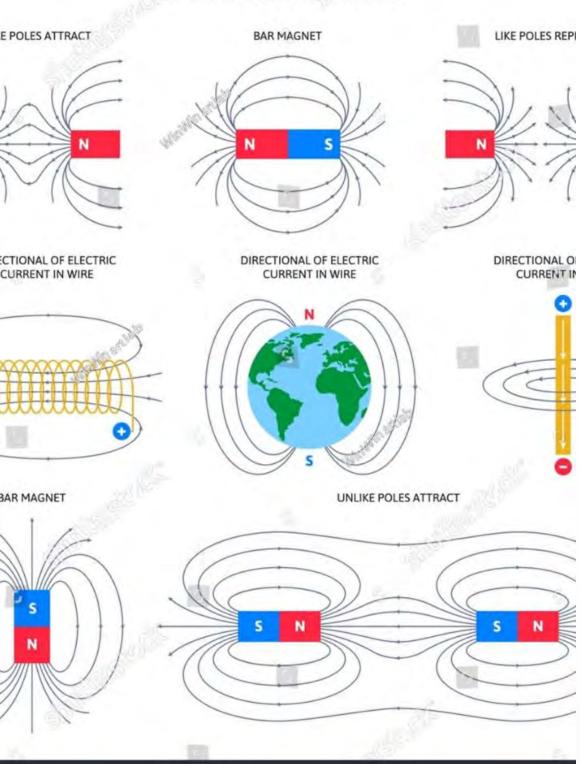
Provides the electromotive force (voltage) to drive current through the circuit

# N ₩

#### **Conductors**

Provide a path for current flow with minimal resistance

#### Controls


Switches and protective devices that manage circuit operation

#### Load

Uses electrical energy to perform useful work

Understanding these components and how they work together in series and parallel circuits is essential for gas technicians to effectively troubleshoot and maintain the electrical systems in gas equipment.

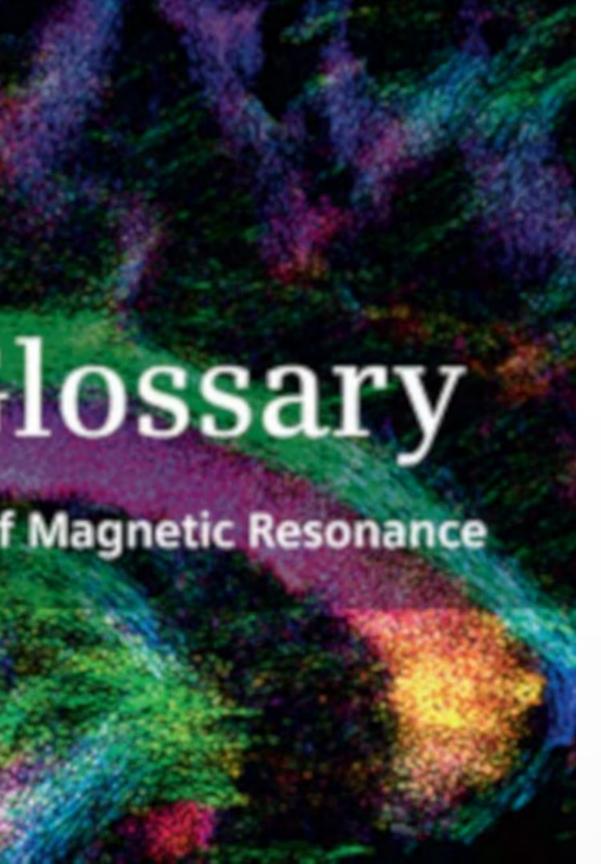
#### **MAGNETIC FIELD**



## CSA Unit 5

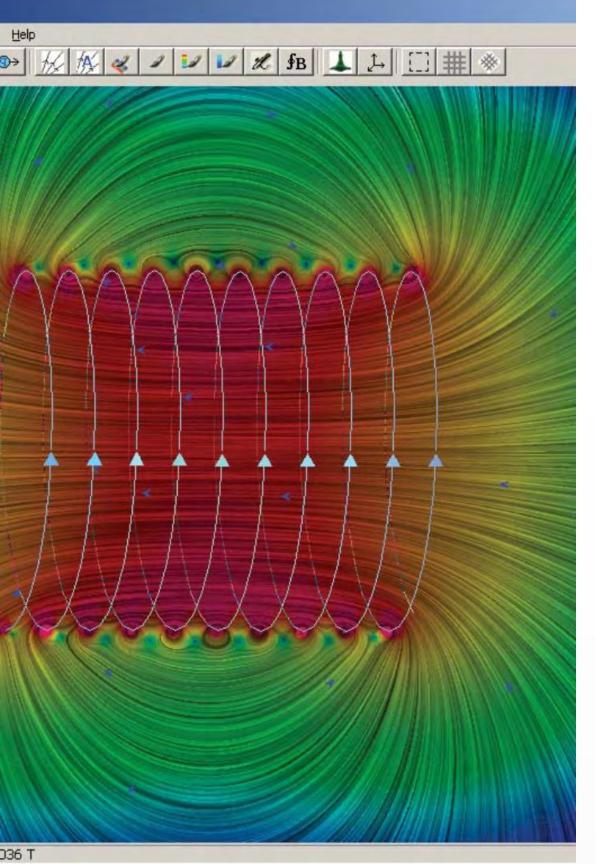
# Chapter 4 Principles of Basic Magnetism and Electromagnetism

Gas technicians/fitters require knowledge of the principles of magnetism and electromagnetism to understand the operation of electric motors, solenoid switches, and valves and relay Units in control circuits.


## Objectives

Describe the principles of basic magnetism

Understanding magnetic materials, electron behavior, polarity, and magnetic fields


Describe the principles of basic electromagnetism

Understanding how electricity and magnetism interact in conductors, coils, and electromagnetic devices



## **Key Terminology**

| Term                         | Definition                                                                                                             |
|------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Electromagnet                | Magnet that is a product of passing an electric current through a conductor                                            |
| Electromagnetism             | Magnetism that results from the movement of electrons                                                                  |
| Ferromagnetic materials      | Materials that attract other magnetic materials                                                                        |
| Flux density                 | Magnitude of a magnetic, electric, or other flux passing through a Unit area                                           |
| Lines of force or flux lines | Imaginary line that represents the strength and direction of a magnetic, gravitational, or electric field at any point |



## More Key Terminology

| Term              | Definition                                                                                             |
|-------------------|--------------------------------------------------------------------------------------------------------|
| Magnetic field    | Region around a magnetic material or a moving electric charge within which the force of magnetism acts |
| Permanent magnets | Magnets that retain their magnetic effects                                                             |
| Permeability      | Ease with which a material accepts magnetic lines of force                                             |
| Temporary magnets | Magnets that do not retain their magnetic effects                                                      |

## Magnetic Materials



#### Ferromagnetic Materials

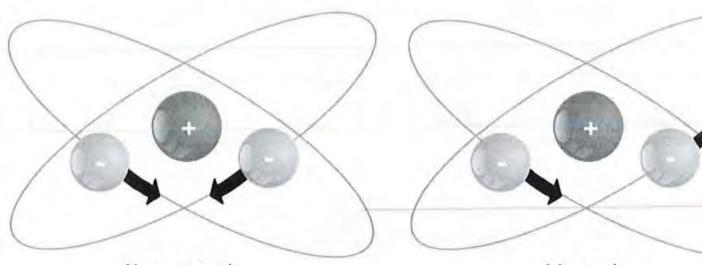


Natural Ferromagnetic Metals

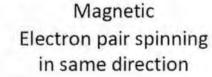
Magnetism is the property certain materials have that allows them to attract other magnetic materials. These are called ferromagnetic materials.

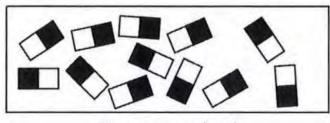
Iron, nickel, and cobalt are the only naturally occurring ferromagnetic metals. (Steel is ferromagnetic but is made from iron.)




#### Types of Magnets

Magnets that retain their magnetic effects are permanent magnets. Those that do not retain their magnetic effects are temporary magnets.





#### Electrons, Molecules, and Magnetism

## Figure 4-1 Molecular alignment in a magnet



Nonmagnetic Electron pair spinning in opposite directions





Nonmagnetized

Magnetized

#### **Electron Spin and Magnetism**

Any conductor of electric current acts like a magnet. In fact, it is spinning electrons that cause magnetic forces.

In most atoms, electrons tend to pair off in orbits that have spins in opposite directions. Each spin

#### **Magnetic Materials**

In a magnetic material, electrons with similar spins can pair off. Their magnetic fields add together and the molecules of the material have a net magnetic field.

When a ferromagnetic material is not magnetized, its molecules are randomly oriented. Their

## Magnetized Materials

#### **Unmagnetized State**

When a ferromagnetic material is not magnetized, its molecules are randomly oriented. Their magnetic effects work in different directions and cancel each other.



#### **Magnetized State**

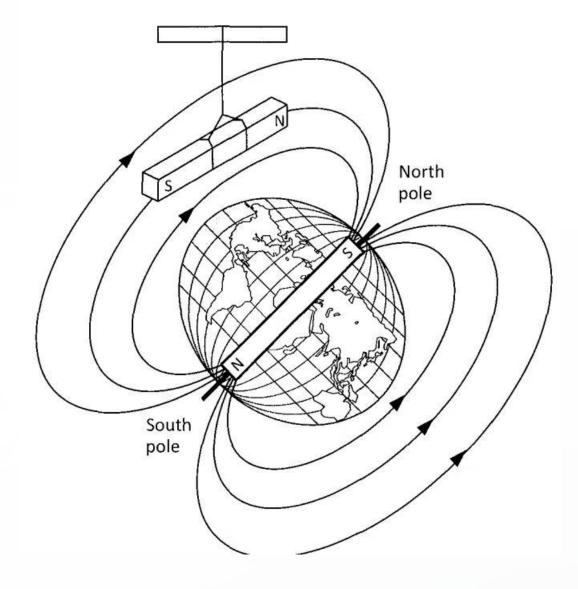
In a magnetized metal, the molecules are aligned with each other so that the magnetic effects of the molecules all work together. This produces a strong magnet.



#### Partially Magnetized

If a magnetic material is partially magnetized, only some of the molecules are aligned. This produces a weak magnet.




#### **Losing Magnetism**

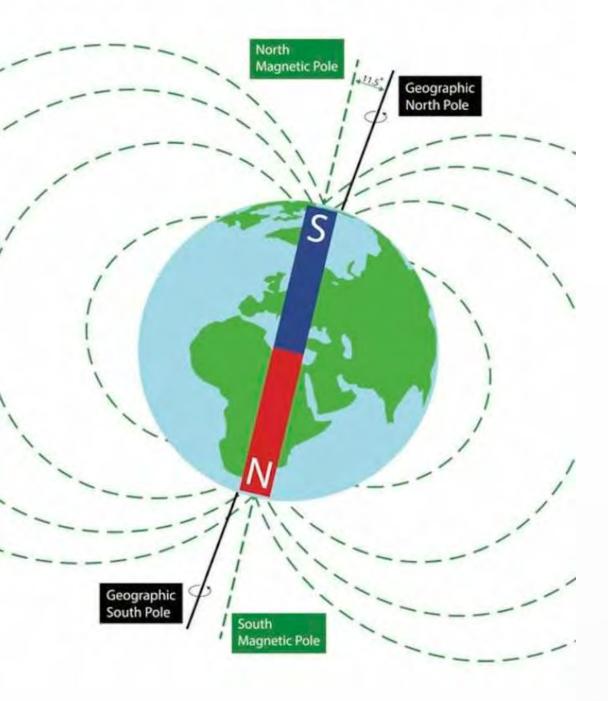
If the molecules of a magnet become misaligned again, the material loses its magnetism. This can gradually happen. It can also happen if the magnet becomes very hot or receives a strong physical shock.

# Domains before magnetization random directions Unmagnetized material Domains after magnetization ralign in same direction Magnetized material Magnetized material Magnetized material

#### **Magnetic Polarity**

Figure 4-2 Magnetic polarities




#### Magnetic Poles

The magnetic field is strongest at each end of a magnet. These ends are what you call the poles of the magnet.

#### North and South Seeking Poles

When you suspend a magnet so that it is free to move, it will turn so that one pole always points toward the Earth's North Pole.

## he Earth's Magnetic Fiel



## **Compass Operation**

#### Compass Principle

The interaction of a magnet with the earth's magnetic effect is the operating principle of a compass. The needle of a compass is a small permanent magnet that indicates its north-seeking pole.

#### **Compass Direction**

Regardless of the direction towards which the compass turns, its needle always swivels to point north.

#### Law of Attraction and Repulsion

If the north poles of two magnets point toward each other, they repel each other. Two south poles also repel each other. On the other hand, a north and a south pole attract each other.

Like poles repel, unlike poles attract.

# Magnetic Fields and Lines of Force

# Magnetic Field Definition

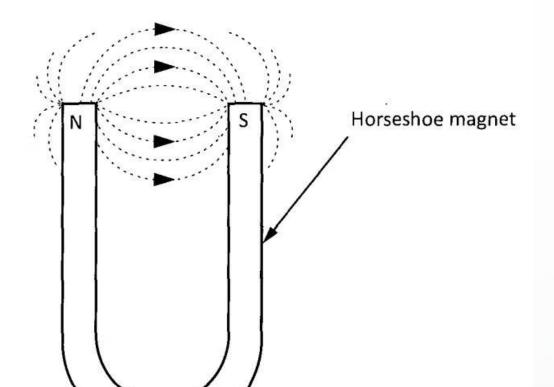
A magnetic field consists of lines of force that interact with magnetic substances. The most common magnetic substances are iron and steel.

You can make iron magnetic but it will lose its magnetism quickly. Steel, on the other hand, remains magnetic for a longer period.

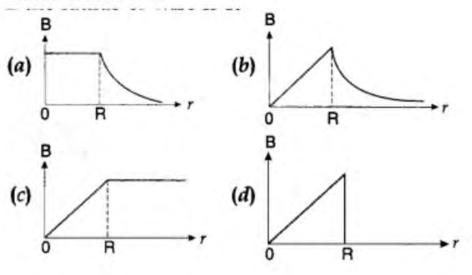
# Permanent Magnets

Magnetized metal bars are what you call permanent magnets. There are different types of permanent magnets:

- A bar magnet
- A horseshoe magnet


Permanent magnets appear to be ordinary pieces of steel. Even close observation will not reveal any visible signs of magnetism.

# Types of Permanent Magnets


Figure 4-3
Magnetic fields

N

Bar magnet



7. The correct plot of the magnitude of magnetic field  $\vec{B}$  vs distance r from centre of the wire is, if the radius of wire is R



# Magnetic Force and Fields



## Action at a Distance

The magnetic force can act at a distance without contact. It can act in the magnetic field, the area that surrounds the magnet.

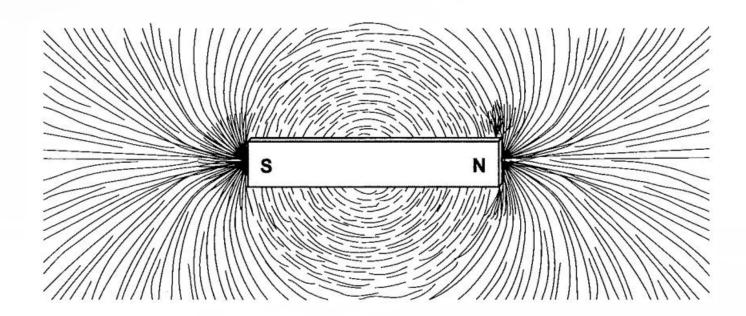


## **Lines of Force**

In the magnetic field, the force acts in lines of force or flux lines.



## **Affected Materials**


The magnetic field will only affect magnetic material such as iron, steel, nickel, and cobalt.



# **Invisible Force**

If you bring any iron or steel object close to the magnet, the invisible magnetic field will pull it toward the magnet.

# Visualizing Magnetic Fields



# Iron Filings Experiment

Although flux lines are not visible, you can see if you place a small magnet under a sheet of paper and sprinkle iron filings over the top of it.

When you tap the paper gently, the iron filings move slightly to align themselves along the flux lines.

## **Characteristics of Flux Lines**

Notice that flux lines are:

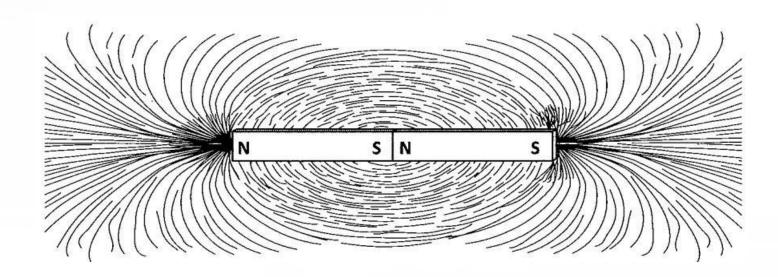
- More concentrated at the two poles (the magnetic field and force is stronger here)
- Farther apart at greater distances from the magnet (the magnetic field and force is weaker here)
- Curved and do not cross

| Material               | Relative Permeability |  |
|------------------------|-----------------------|--|
| Copper                 | 0.9999906             |  |
| Silver                 | 0.9999736             |  |
| Lead                   | 0.9999831             |  |
| Air                    | 1.00000037            |  |
| Oxygen                 | 1.000002              |  |
| Aluminum               | 1.000021              |  |
| Titanium 6-4 (Grade 5) | 1.00005               |  |
| Palladium              | 1.0008                |  |
| Platinum               | 1.0003                |  |
| Manganese              | 1.001                 |  |
| Cobalt                 | 250                   |  |
| Nickel                 | 600                   |  |
| Iron                   | 280,000               |  |

# Permeability of Materials

# Definition of Permeability

The ease with which a material accepts magnetic lines of force is what you call its permeability.


# High Permeability Materials

Iron and steel have high permeability, meaning they readily accept magnetic lines of force.

# Low Permeability Materials

Air, on the other hand, has low permeability, meaning it does not readily accept magnetic lines of force.

# Interaction of Magnetic Fields



### **Combined Flux Patterns**

When you bring together two magnets, their magnetic fields interact. You can clearly see the way the flux lines combine using iron filings.

Magnets always have north and south poles. The magnetic lines of force extend from the north pole of a magnet to the south pole.

# Magnetic Attraction and Repulsion

The poles react with each other. If you bring two north or two south poles together, they will repel or push away each other.

If a north pole and a south pole come together, however, they will attract and stick together (like poles repel and unlike poles attract).

You use this magnetic field effect to operate electric motors, generators, and other devices.

# Magnetic Strength and Flux Density



# Varying Magnetic Strength

Some magnets are stronger than others. A stronger magnet pulls harder and is harder to separate from a magnetic substance.



## **Lines of Force**

If you place a stronger magnet under the iron filings, more lines of force will show. The stronger the magnet, the more lines of magnetic force produced.



$$F = B I l$$

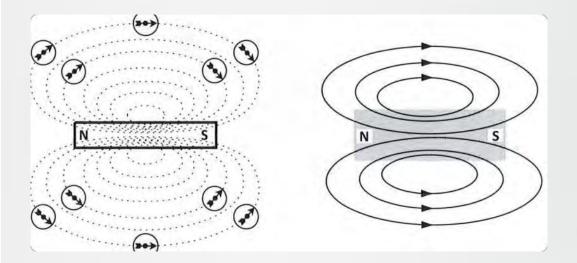


# Flux and Flux Density

These lines are what you call flux, and their concentration is what you call flux density.

# Direction of Flux Lines

# Flux Direction Convention


Lines of force are considered to emerge from the magnet's north pole and move toward the south pole. Diagrams show the direction using arrows.

# Complete Magnetic Circuit

They travel from south to north within the magnet to form a closed loop.

# **Compass Indication**

The direction of flux lines is the direction in which the north-seeking pole of a compass would point.



# Principles of Basic Electromagnetism

## Definition of Electromagnetism

Electromagnetism is magnetism that results from the movement of electrons.

Whenever current flows in a conductor, a magnetic field forms around the conductor.

# Electromagnetic Induction

If you move a conductor within a magnetic field, the movement will induce a voltage and current will flow in the conductor.

Electric currents and magnetic fields are inseparable. In the area where current flows, there are always magnetic fields.



# Characteristics of Electromagnets



# **Current Dependency**

Electromagnets depend upon current flow for their magnetism.

If current flow decreases, so does the magnetism.



# **Polarity Determination**

The direction of current flow determines the polarity of the magnet.



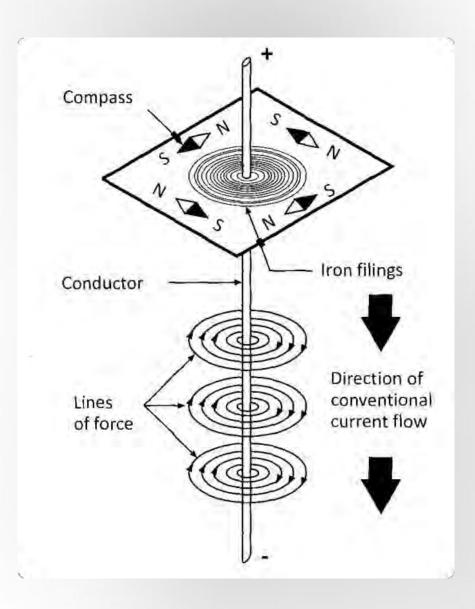
# On/Off Capability

If the current is turned off, the electromagnet is no longer magnetic.

# Electromagnetism in a Straight Wire

Figure 4-7
Using a compass near a conductor to show the presence of a magnetic field and its polarity

# **Compass Detection**


If you move around a compass near a straight wire conductor, it shows the presence and direction of a magnetic field.

The flux lines encircle the wire.

## **Current Direction Effect**

If the direction of current flow changes, the direction of the magnetic field also changes.

You use a simple rule to work out the direction of the magnetic lines of force around a wire.



# The Right-Hand Rule

# Determining Magnetic Field Direction

Imagine grasping the wire with your right hand. If your thumb points in the direction of conventional current flow, your fingers wrap around the wire in the direction of the magnetic lines of force.

# Right-Hand Rule Application

This simple technique allows you to predict the direction of the magnetic field around any current-carrying conductor.

# Practical Importance

Understanding the relationship between current direction and magnetic field direction is crucial for designing and troubleshooting electromagnetic devices.

# Magnetic Forces Between Conductors

Figure 4-9
Forces of magnetic attraction and repulsion between conductors

**A** 

## Same Direction Current

If the current is flowing in the same direction, the magnetic lines of force around the wires would be in opposition and the two wires would attract each other.

# **Opposite Direction Current**

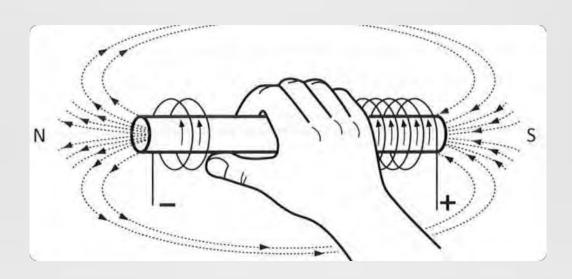
If the current is flowing in opposite directions, the magnetic lines of force around the wires would be similar and the two wires would oppose each other.

# High Current Risks

When very large currents can flow through conductors, the resulting magnetic forces can damage the conductors.

# Electromagnetism in a Coil of Wire

# **Concentrated Magnetic Field**


If a wire is coiled in a spiral (helically), the magnetic field is concentrated in the centre of the coil.

# **Steel Core Enhancement**

If you have wound the wire around a steel bar, the resulting magnet can be very strong.

# Field Shape

The shape of the magnetic field of a coil is like a large bar magnet. The lines of force leave the north pole at one end of the coil and pass toward the south pole at the other end.

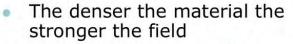


# Right-Hand Rule for Coils

# Finding Coil Polarity

You can use another righthand rule to find the direction of the magnetic field of a coil.

# **Application Method**


Imagine grasping the coil with your right hand: If the fingers wrap in the direction of conventional current flow around the coil, the thumb then points in the direction of the north pole of the coil.

## **Practical Use**

This rule helps determine which end of an electromagnet will be the north pole and which will be the south pole based on the direction of current flow.

# Factors that affect the Magnetic field of an Electromagnet

### 1. The core material





## 2. The current intensity

 Higher the current stronger the magnetic field



# 3. Number of loops (number of turns)

More turns gives a stronger field.



# Strength of a Coil's Magnetic Field



## **Coil Winding Density**

A closely wound coil creates a stronger magnetic field.



## **Core Material**

Because the permeability of iron is much higher than air, permanently placing an iron or steel core inside the wire coil makes the magnetic field of a coil even stronger.



# **Current Magnitude**

Increasing the current flowing through the coil increases the strength of the magnetic field.



## **Number of Turns**

More turns in the coil result in a stronger magnetic field for the same current.

# Making an Electromagnet

## **Core Selection**

Using an iron core in a coil is the basis for making an electromagnet. A coil is wound around a core of steel with a low carbon content (or iron).

This has high permeability but does not retain much magnetism after the current stops flowing, removing the magnetic field.

# Applications of Electromagnets

You use various sizes of electromagnet in many ways in the home and in industry. You use them in:

- Motors
- Generators
- Clocks
- Voltage testers
- Solenoid and relay Units in control circuits
- Cranes for lifting scrap metal, etc.

# **Electricity and Magnetism**

# Inseparable Relationship

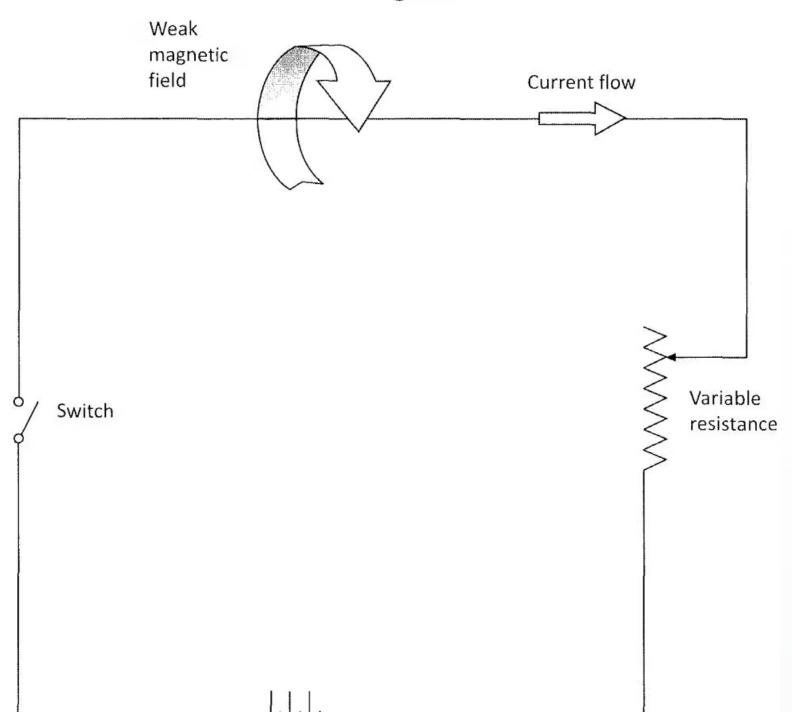
Magnetism and electric current are inseparable. The flow of current through a conductor (wire) produces a magnetic field around that conductor.

## **Direct Current Effects**

If the electric current flow is constant, as with DC current, the magnetic field is constant, and the product is a magnet.

# **Alternating Current Effects**

With alternating current, the magnetic field changes direction every time that the current flow changes direction.


# ELECTRICITY AND MAGNETISM RELATIONSHIP



How Are Electricity And Magnetism Related To Light Waves?

# **Current Flow and Magnetic Field**

Figure 4-11 Induced magnetic fields



# Current Magnitude and Magnetic Field Strength



### Circuit Activation

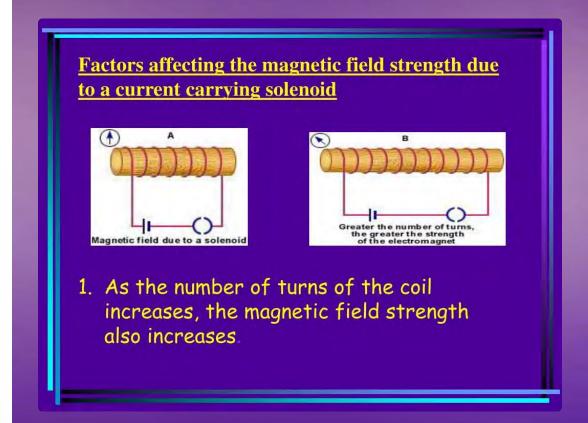
When the switch is closed, current begins to flow through the circuit.



## Resistance Adjustment

If the switch is closed and the variable resistance adjusted, the current flow will change.




## **Increasing Current**

As the resistance lowers, the current flow increases.



## Magnetic Field Strengthening

When the current flow increases, the magnetic field surrounding the wire strengthens.



# **Coiled Wire and Electromagnets**

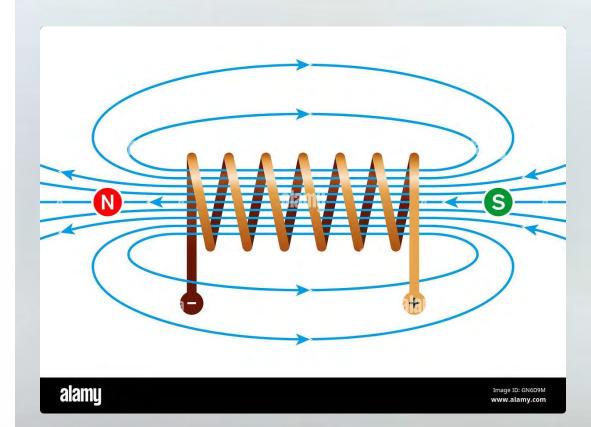
Figure 4-12 Magnetic coils Strong magnetic field Weak magnetic coil Coil Position of core Current flow Variable resistance Switch Solenoid coils Battery Iron core

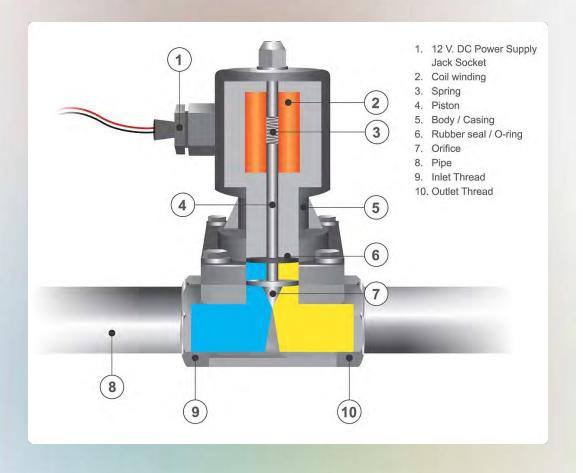
# Combined Magnetic Fields in Coils

1 Individual Wire Contribution

Each wire in the coil carries the current flow through it. Therefore, each loop of the coil generates a small magnetic field around itself.

2 Field Alignment


Since the electric current flows in the same direction through each loop, the magnetic field around each wire extends in the same direction.


3 Combined Effect

These small magnetic fields combine to produce a single, larger field. The strength of the larger field depends on the number of loops in the coil.

4 Strengthening Methods

You can strengthen a magnetic field by increasing the applied voltage or by increasing the number of loops in the coil.





# **Solenoid Operation**



# Coil with Iron Plunger

If you place a magnetic plunger, such as a soft iron bar, inside a coil of wire in a DC circuit.



## **Circuit Activation**

When the switch is closed, current flows through the coil.



# Magnetic Field Generation

The current flow produces a magnetic field within and around the coil.



# Plunger Movement

The magnetic field produced will attract the iron bar, pulling it to the centre of the coil.

# Solenoid Applications

# **Motor Contactors**

Solenoids are used in motor contactors to mechanically connect or disconnect electrical circuits, allowing for remote control of motors.

## Solenoid Valves

In fluid control systems, solenoid valves use electromagnetic force to control the flow of liquids or gases through pipes and tubes.

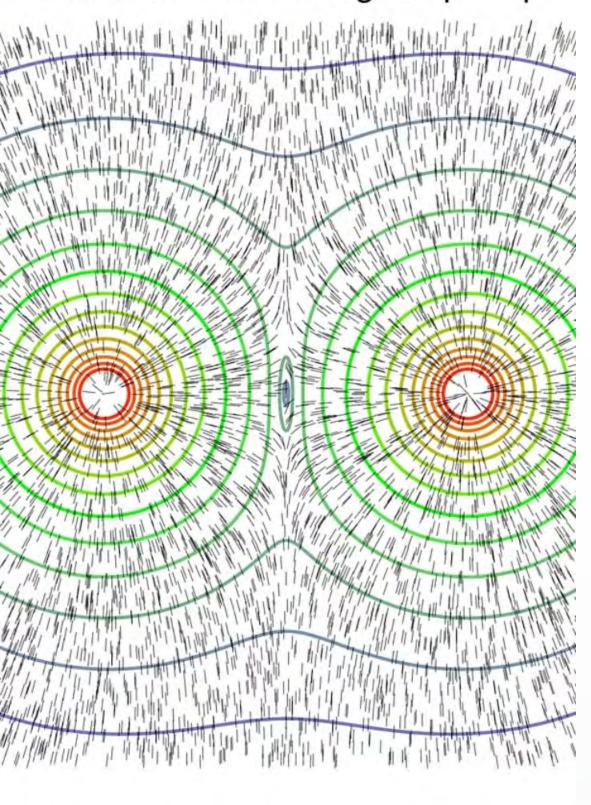
# Relays

Electromagnetic relays use solenoids to open or close electrical contacts, allowing a low-power circuit to control a high-power circuit.



# Magnetic Permeability in Coils

# Magnetic Circuit Analogy


A magnetic field is a bit like an electric circuit. Magnetic lines pass through a magnetic conductor better than through a magnetic insulator.

## Air vs. Iron Core

Air has a high magnetic resistance. For that reason, an air-filled coil will not produce as strong a magnet as a coil that is wrapped around an iron core.

Iron is a better conductor of magnetism and is said to be more permeable.

# E-field from two charges: q1 = q2



# AC Current and Magnetic Fields



# Universal Magnetic Effect

Electric current flow through any conductor produces a magnetic field around the conductor. This is true for alternating current as well as for direct current.



# Alternating Field Direction


With alternating current, however, the magnetic field changes direction every time that the current flow changes direction.



## **Mechanical Effects**

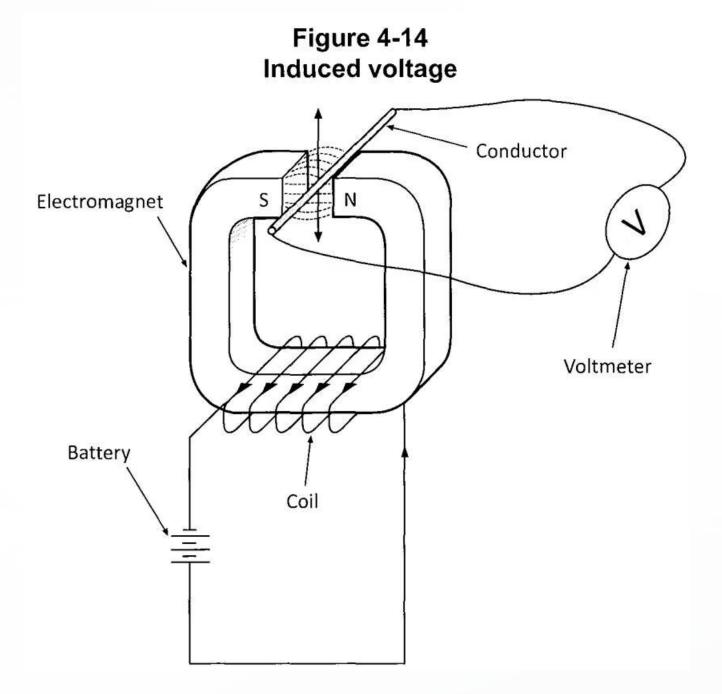
The rapid switching of magnetic fields can cause vibration in AC electric machines. This explains why some machines, such as transformers, sometimes hum as the iron parts vibrate.

# Magnetic Relay



## Relay Structure

A magnetic relay consists of an electromagnet (coil) and a set of electrical contacts that can be opened or closed by

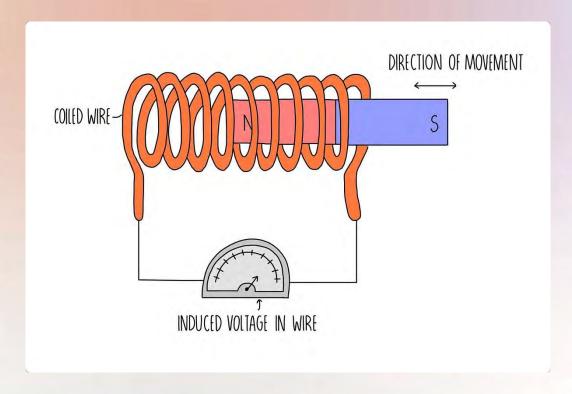

# **Operation Principle**

When current flows through the coil, it creates a magnetic field that attracts a movable armature, which in turn

## **Applications**

Relays are used in control circuits to allow a low-power signal to control a higher-power circuit, providing electrical

# **Electromagnetic Induction**




### Reciprocal Relationship

As mentioned previously, the flow of an electric current flows through a conductor produces a magnetic field around that conductor.

### U-Shaped Electromagnet Example

Figure 4-14 shows a u-shaped electromagnet. The supply of direct current to the coil around the iron core produces an electromagnet.



# Factors Affecting Induced Voltage



# Voltage Magnitude

The voltage generated is very small, but is measurable with a sensitive meter.



## Flux Line Cutting

The voltage generated depends on the number of lines of flux that the conductor cuts every second and on the angle at which the conductor cuts the flux.



# **Speed Effect**

The faster the movement of the conductor, the greater the voltage produced.



# Flux Density Effect

Increasing the concentration of magnetic flux lines (flux density) increases the induced voltage, with the conductor moving at a constant speed.



# Power Generation Application

## Industrial Scale Application

You use the same principle to generate large amounts of electric energy in power stations.

## **Generator Operation**

In power stations, large generators use powerful electromagnets and rapidly rotating conductors to produce electricity on an industrial scale.

# **Energy Conversion**

This process converts mechanical energy (from steam turbines, water turbines, or wind turbines) into electrical energy through electromagnetic induction.

# magnetic magnet very as retention high degree

# Types of Magnets Comparison

| Characteristic         | Permanent<br>Magnets                          | Temporary<br>Magnets   | Electromagnets                             |
|------------------------|-----------------------------------------------|------------------------|--------------------------------------------|
| Retention of magnetism | Retain<br>magnetism<br>indefinitely           | Lose magnetism quickly | Only magnetic<br>when current<br>flows     |
| Materials              | Special steel<br>alloys, rare earth<br>metals | Soft iron              | Wire coil with iron core                   |
| Strength control       | Fixed strength                                | Fixed strength         | Variable (by changing current)             |
| Polarity               | Fixed                                         | Fixed                  | Reversible (by changing current direction) |

# Magnetic Field Visualization Methods



# Iron Filings

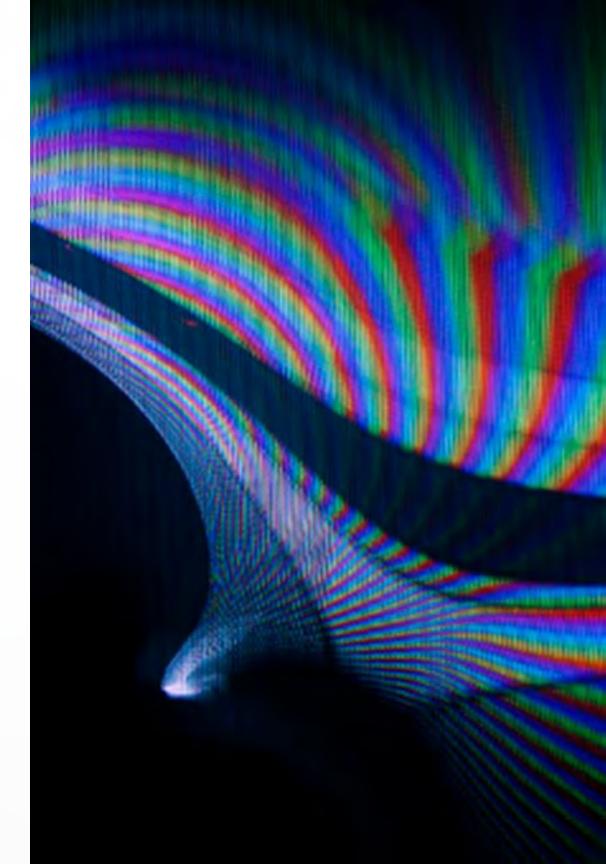
Sprinkle iron filings on paper placed over a magnet to see the pattern of magnetic field lines.



# Compass Needle

Use a small compass to trace the direction of magnetic field lines around a magnet or current-carrying conductor.




## Magnetic Field Sensors

Electronic devices
that can measure the
strength and
direction of magnetic
fields at various
points.



## Ferrofluid

A liquid containing suspended magnetic particles that forms spikes along magnetic field lines.



# Applications of Electromagnets



# **Electric Motors**

Electric motors use electromagnets to convert electrical energy into mechanical motion. The interaction between the magnetic fields of stationary electromagnets and rotating components creates rotational force.



# **Lifting Cranes**

Industrial cranes use powerful electromagnets to lift and move ferromagnetic materials like scrap metal. The magnetism can be turned on and off as needed, making loading and unloading efficient.



# Medical Equipment

MRI machines use superconducting electromagnets to generate powerful magnetic fields that allow detailed imaging of the human body's internal structures.

# Solenoid Valve Applications

# Gas Control Systems

Solenoid valves are critical components in gas control systems, where they regulate the flow of gas based on electrical signals.

When current flows through the solenoid coil, it creates a magnetic field that moves a plunger, which opens or closes the valve.

# Advantages for Gas Technicians

For gas technicians and fitters, understanding solenoid valves is essential because:

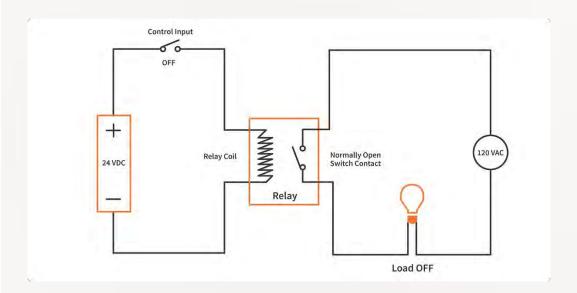
- They provide remote control of gas flow
- They can be integrated with safety systems
- They allow for automated operation
- They can quickly shut off gas flow in emergency situations

# Relay Operation in Control Circuits

## Signal Reception

A small control current is applied to the relay coil from a low-voltage control circuit.

# **Electromagnetic Activation**


The current in the coil creates a magnetic field that attracts the armature.

# **Contact Operation**

The moving armature mechanically operates the electrical contacts, either opening or closing them.

## **Power Circuit Control**

The contacts control a separate high-power circuit, allowing the low-power control signal to safely manage high-power devices.



# Factors Affecting Electromagnet Strength

1000+

Turns of Wire

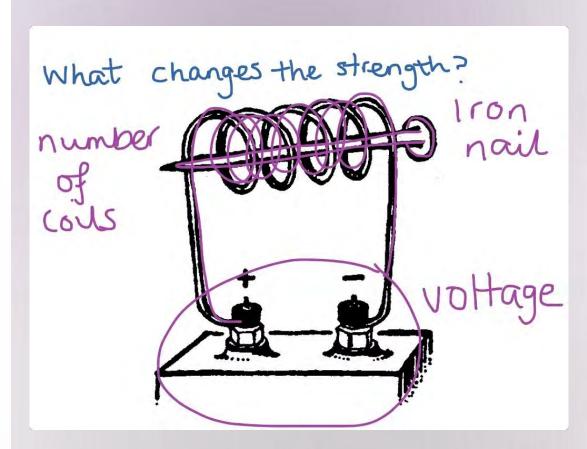
More turns create stronger magnetic fields

5000

Iron Permeability

Relative to air (which is 1)

100%


Strength Increase

When doubling the current

0

Residual Magnetism

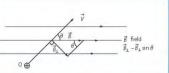
In soft iron when current stops



### 7.2 Magnetic Field Strength



### **Calculating Magnetic Field Strength**


A moving charged particle that enters a magnetic field at any direction other than parallel will experience a force,  $F_B$ , that depends on the charge, Q, and speed,  $\nu$ , of the particle, the strength of the magnetic field, B.

$$\frac{F_B}{Qv}$$
 = constant = B

$$F_B = QvB$$

Unit for magnetic Field strength is the **Tesla** (**T**):

$$\frac{1 \text{ N}}{\text{C} \cdot \text{m/s}} = \frac{1 \text{ N}}{\text{A} \cdot \text{m}} = 1 \text{ T}$$



If the charged particle's motion is not at right angles to the magnetic field then the equation above must be modified:

$$F_B = QvB \sin \theta$$

p. 274

# Magnetic Field Strength Units

| Quantity                | Symbol | SI Unit                   | Description                                                         |
|-------------------------|--------|---------------------------|---------------------------------------------------------------------|
| Magnetic field strength | Н      | Ampere per meter<br>(A/m) | Measure of the magnetizing field produced by current                |
| Magnetic flux density   | В      | Tesla (T)                 | Measure of the resulting field in a material                        |
| Magnetic flux           | Ф      | Weber (Wb)                | Total magnetic field passing through an area                        |
| Permeability            | μ      | Henry per meter<br>(H/m)  | Measure of a material's ability to support magnetic field formation |

# DEMAGNETIZATION (Electrical Method)

# Demagnetization Methods



### Heating

When a magnetic material is heated above its Curie temperature, the thermal energy disrupts the alignment of magnetic domains, causing it to lose its magnetism.



### **Physical Shock**

Strong physical impacts can disrupt the alignment of magnetic domains in a material, reducing or eliminating its magnetism.



### **Alternating Current**

Exposing a magnet to a decreasing alternating magnetic field gradually randomizes the orientation of magnetic domains.



### **Natural Decay**

Over time, some magnetic materials gradually lose their magnetism due to thermal effects and external magnetic influences.

# Magnetic Shielding

### **Principle of Operation**

Magnetic shielding works by redirecting magnetic field lines around the area to be protected, rather than blocking them.

Materials with high permeability provide a path of least resistance for magnetic flux, drawing the field lines through the shielding material instead of the protected space.

### **Applications**

Magnetic shielding is used in various applications:

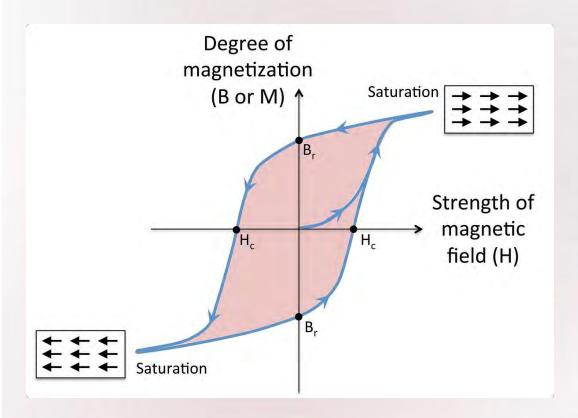
- Protecting sensitive electronic equipment
- Shielding medical devices from external magnetic interference
- Containing magnetic fields in transformers and motors
- Preventing electromagnetic interference between components

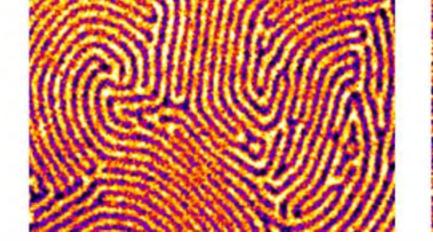
# Magnetic Hysteresis

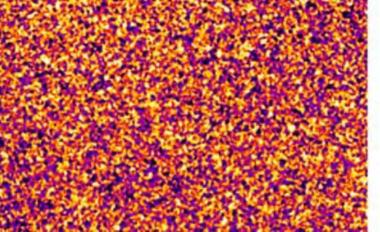
### **Definition**

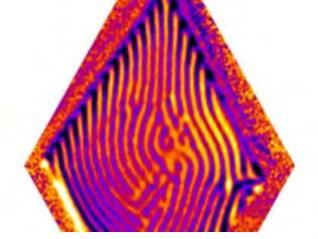
Magnetic hysteresis is the tendency of a magnetic material to retain its magnetization after the magnetizing force is removed.

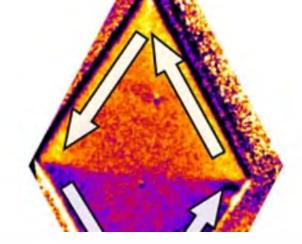
### Hysteresis Loop


The hysteresis loop is a graph showing how the magnetic flux density (B) in a material changes as the magnetizing force (H) is varied.


### **Energy Loss**


The area inside the hysteresis loop represents energy lost as heat during each magnetization cycle, which is important in transformer and motor design.


### **Material Selection**


Materials with narrow hysteresis loops (soft magnetic materials) are used in transformers to minimize energy losses, while materials with wide loops (hard magnetic materials) are used for permanent magnets.











# **Magnetic Domain Theory**



### Atomic Level Magnetism

In ferromagnetic materials, atoms have unpaired electrons that create tiny magnetic moments.



### **Domain Formation**

These atoms naturally group into regions called domains, where all atomic magnetic moments are aligned in the same direction.



### **Unmagnetized State**

In an unmagnetized material, domains are randomly oriented, and their magnetic effects cancel out.

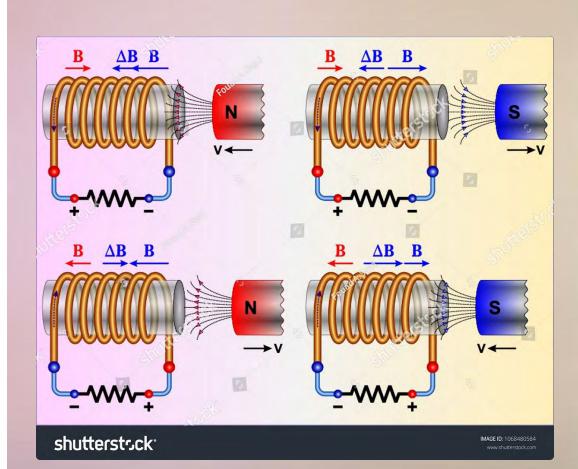


### Magnetization Process

When exposed to an external magnetic field, domains aligned with the field grow at the expense of others, resulting in net magnetization.

# Lenz's Law

### Definition


Lenz's Law states that the direction of an induced current is always such that it creates a magnetic field that opposes the change that produced it.

### Conservation of Energy

This law is a consequence of the conservation of energy. If the induced current created a field that enhanced the original change, it would create a self-reinforcing system that generated energy from nothing.

### **Practical Applications**

Lenz's Law explains the operation of generators, transformers, and eddy current brakes, and helps predict the behavior of electromagnetic systems.



# **Eddy Currents**

### Formation Mechanism

When a changing magnetic field passes through a conductive material, it induces circulating currents called eddy currents within the material.

These currents flow in closed loops perpendicular to the magnetic field, following Lenz's Law to oppose the change that created them.

### **Effects and Applications**

Eddy currents have several important effects:

- They cause heating in the conductor (used in induction heating)
- They create opposing magnetic fields (used in electromagnetic braking)
- They result in energy losses in transformers and motors
- They're used in non-destructive testing to detect flaws in materials

# Transformer Principle

### **Primary Current**

Alternating current in the primary coil creates a changing magnetic field

### **Voltage Transformation**

The voltage ratio depends on the turns ratio between coils



### **Core Magnetization**

The iron core concentrates and directs the magnetic flux

### **Secondary Induction**

The changing magnetic field induces voltage in the secondary coil

# **Electric Motor Operation**

### **Current Supply**

Electric current flows through the motor's coil windings, creating electromagnetic fields.

### Magnetic Interaction

These electromagnetic fields interact with permanent magnets or other electromagnets in the motor.

### **Force Generation**

The interaction between magnetic fields creates forces that cause rotation of the motor's rotor.

### **Continuous Rotation**

Commutation systems or electronic controls continuously change the direction of current flow to maintain rotation.



# Magnetic Field Safety Considerations



### **Medical Devices**

Strong magnetic fields can interfere with pacemakers, implantable defibrillators, and other medical implants.



### **Electronic Media**

Magnetic fields can erase or damage information stored on magnetic media like credit cards, hard drives, and magnetic identification cards.



### Ferromagnetic Tools

Tools made of ferromagnetic materials can become projectiles in strong magnetic fields, posing serious safety hazards.



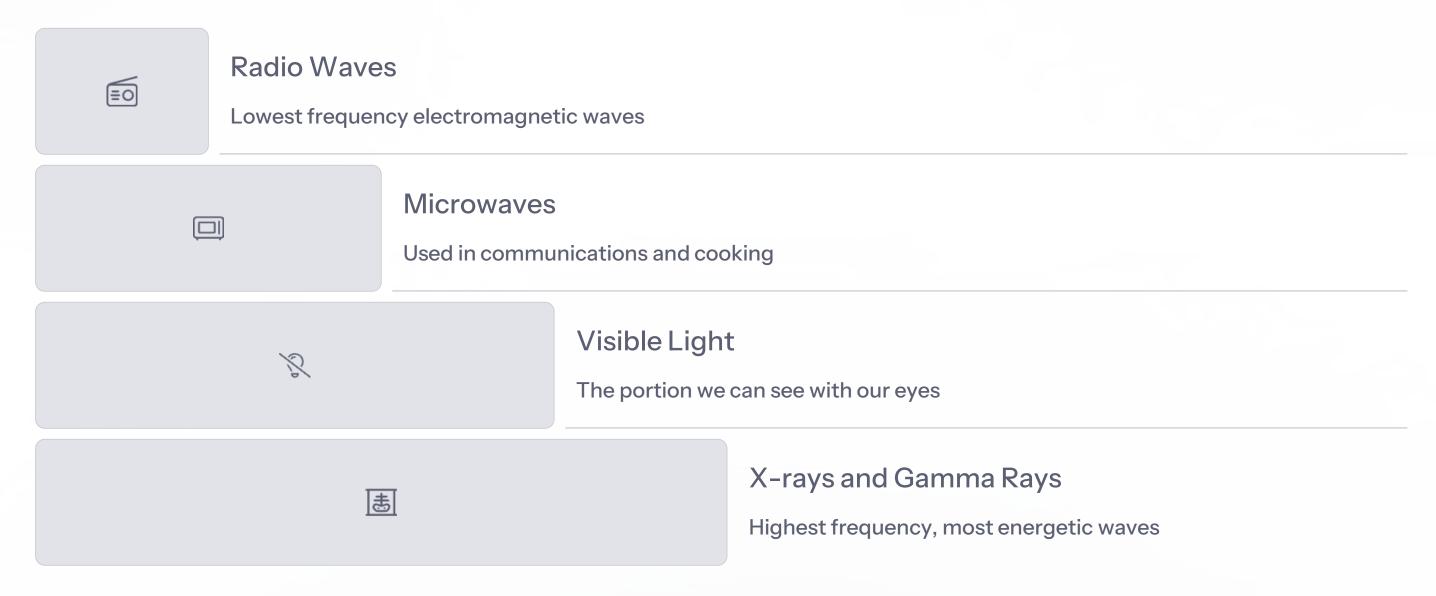
### **Electronic Equipment**

Sensitive electronic equipment can malfunction when exposed to magnetic fields, potentially causing control system failures.





SAFETY






dreamstime.com

ID 192820834 @ Seetwo

# Electromagnetic Spectrum

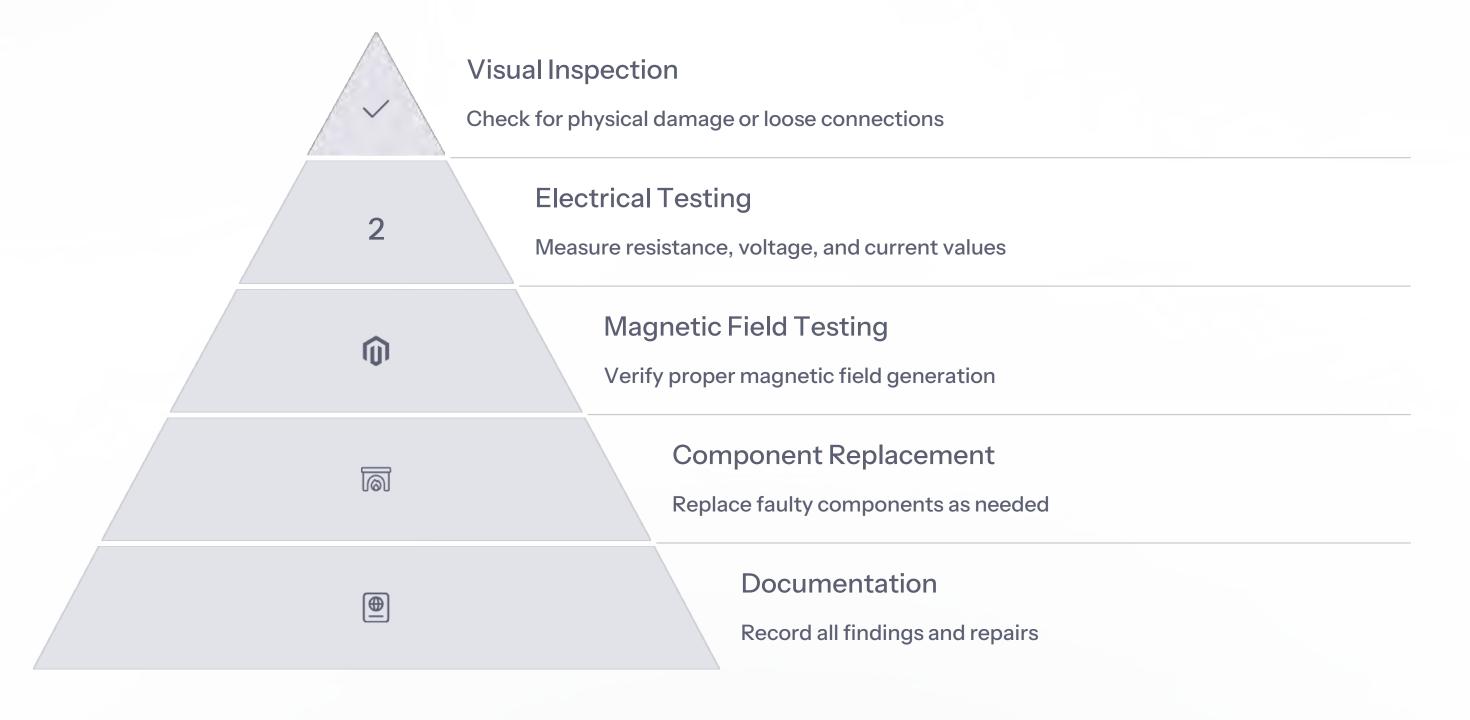


All electromagnetic waves are created by oscillating electric and magnetic fields that are perpendicular to each other and to the direction of wave propagation. They differ only in frequency and wavelength, which determines their properties and applications.

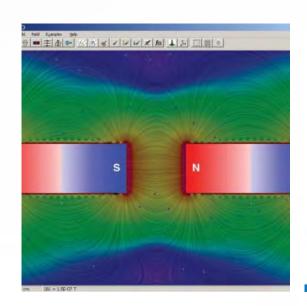
# Electromagnetic Compatibility

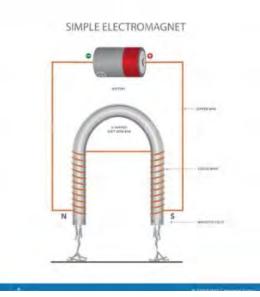
### Definition

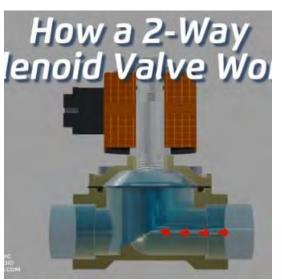
Electromagnetic Compatibility (EMC) refers to the ability of electronic equipment to function correctly in its electromagnetic environment without introducing intolerable electromagnetic disturbances to other equipment.


This is particularly important in gas control systems where electromagnetic interference could affect safety-critical components.

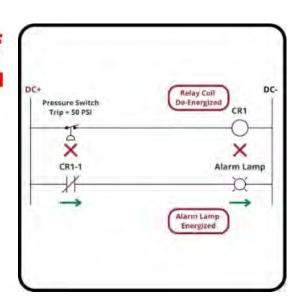
### **Key Considerations**


For gas technicians working with control systems, EMC involves:


- Ensuring proper shielding of sensitive components
- Using appropriate grounding techniques
- Separating power and signal cables
- Installing filters to reduce electromagnetic noise
- Following manufacturer guidelines for installation


# Troubleshooting Electromagnetic Devices

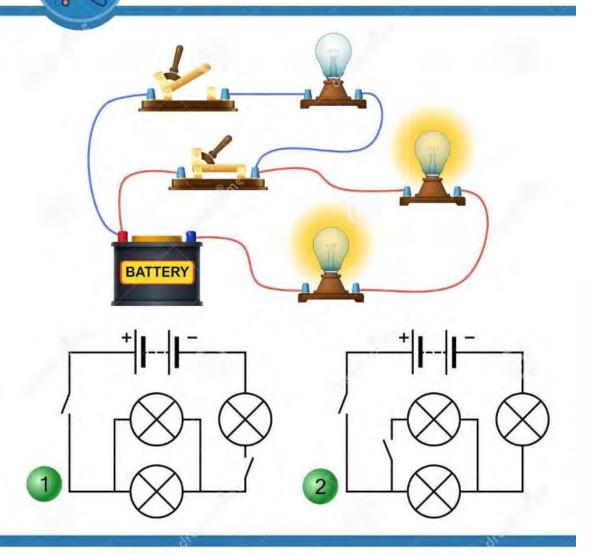



# Summary of Magnetism and Electromagnetism














Understanding the principles of magnetism and electromagnetism is essential for gas technicians and fitters. These principles underpin the operation of many devices used in gas systems, including electric motors, solenoid valves, and relay units in control circuits. By mastering these concepts, technicians can effectively install, maintain, and troubleshoot these critical components, ensuring safe and efficient operation of gas systems.

### **Physics Tests and Questions**




### **Text and Your Questions**

# CSA Unit 5

# Chapter 5 Theory of Direct and Alternating Current

The gas technician/fitter requires knowledge of direct and alternating current theory in order to properly size, connect, and troubleshoot the type of electrical equipment encountered in the gas industry. This presentation covers the fundamentals of direct and alternating current, leading and lagging in AC circuits, and capacitance in AC circuits.



# **Learning Objectives**



Describe Direct and Alternating Current

Understand the fundamental differences between DC and AC electricity



Describe Leading and Lagging in AC Circuits

Comprehend phase relationships in various types of AC circuits



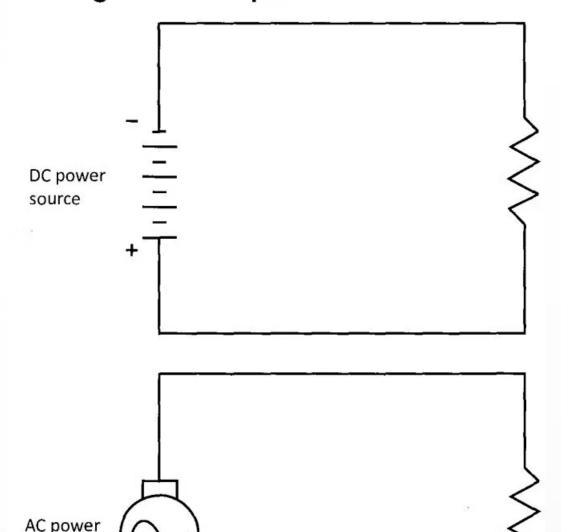
Describe Capacitance in AC Circuits

Learn about capacitors and their behavior in AC electrical systems

# ILLUSTRATED

# **Key Terminology**

| Term                | Abbreviation (symbol) | Definition                                                                                                                                                        |
|---------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AC energy           |                       | Energy consumed in an AC circuit                                                                                                                                  |
| Alternating current | AC or ac              | Electric current that reverses its direction many times a second at regular intervals, typically used in power supplies                                           |
| Direct current      | DC or dc              | Electric current flowing in one direction only                                                                                                                    |
| Waveform            |                       | Describes complete cycle of alternating current goes from zero to a maximum positive value, back through zero to a maximum negative value, and back again to zero |


### Direct Current (DC)

### What is Direct Current?

Direct current (DC) is electric current that flows in one direction only. When a circuit is connected to a DC source like a battery, the current flows from one terminal to the other in the same direction.

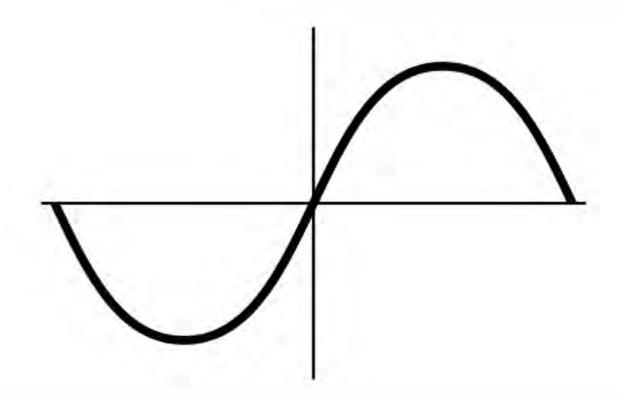
Batteries have a positive and a negative terminal. The battery shown in the example has a voltage of 12 V.

### Diagrams of simple dc and ac circuits



### Common DC Applications

- Electronic devices
- Small appliances
- Automobile electrical systems


DC is often supplied by batteries, which have a limited supply of electrical power and must be replaced or recharged regularly.

# Alternating Current (AC)

### What is Alternating Current?

Alternating current (AC) is electric current that flows alternately in both directions. The flow changes or alternates direction rapidly and constantly.

In North America, generators produce and transmit electrical energy as alternating current with a frequency of 60 hertz (cycles per second). This means that the current flows in one direction for 1/120th of a second and then in the other direction for 1/120th of a second.



Unlike DC where one terminal is always negative and the other positive, AC constantly changes direction. Most motors and other devices in homes and industry operate using alternating current.

# Why AC is Widely Used

### Versatility

AC is more versatile than DC and is usable in a wide variety of ways.

### Long-Distance Transmission

It allows transmission of electricity over long distances more economically.

### **Energy Efficiency**

Transmission of AC energy at high voltage and low current keeps energy losses to a minimum.

### **Cost-Effective**

It is cheaper to produce than DC.

### **Voltage Transformation**

It easily transforms into lower or higher voltages for use in various equipment.

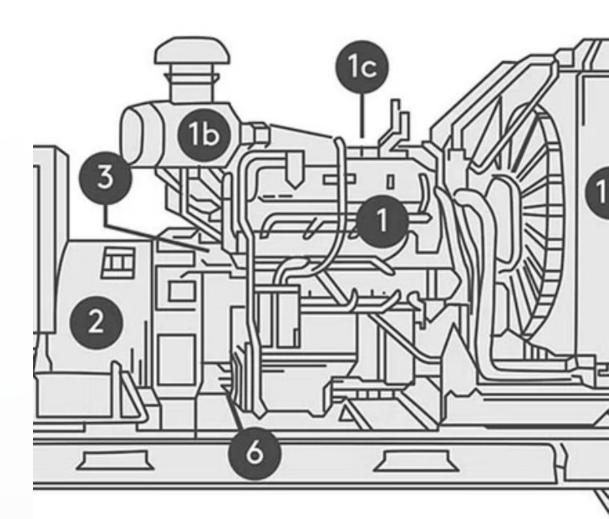
### Flexibility

Many combinations of voltage and current can produce the same energy level.

# **AC Generator Principles**

### Magnetic Field Interaction

A conductor moved in a magnetic field, or vice versa, crosses the flux lines.


### **Electron Movement**

The field applies a force to the free electrons in the conductor, moving them.

### **Voltage Generation**

The moving electrons result in a potential difference across the ends of the conductor.

# ATOR COMPON



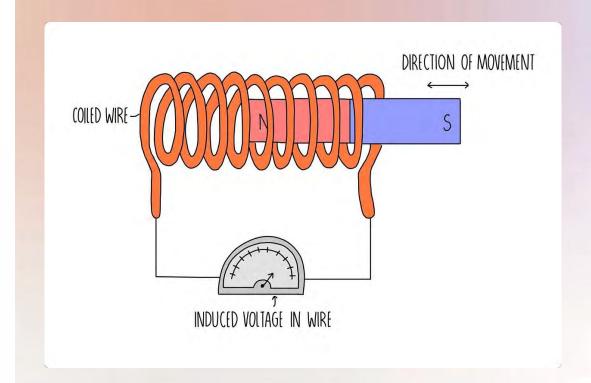
# Factors Affecting Generated Voltage



Magnetic Field Strength

Stronger magnetic fields produce higher voltages




**Conductor Speed** 

Faster movement through flux lines increases voltage



**Cutting Angle** 

The angle at which the conductor cuts the flux lines affects voltage



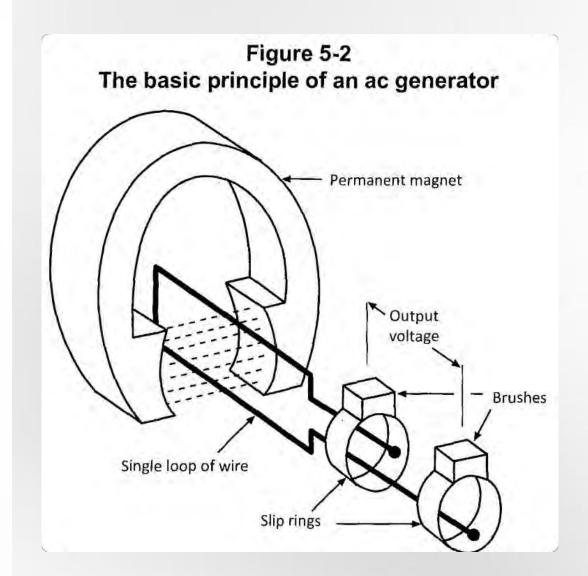
# Simple Generator Operation



### **Power Source**

An outside power source such as flowing water, an internal combustion engine, or steam turns the coil.



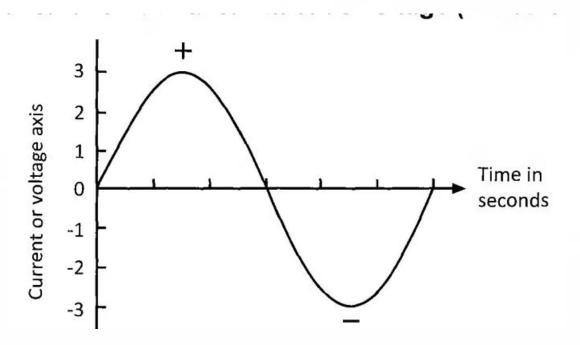

### Magnetic Flux Cutting

As the loop rotates, the wire cuts the magnetic flux lines, generating a voltage at the ends of the loop.



### Voltage Transfer

The generator transfers the voltage to an external circuit via slip rings and brushes. These maintain proper electrical contact while allowing free rotation of the loop.




# The AC Waveform

### Sinusoidal Wave

A complete cycle of alternating current goes from zero to a maximum positive value, back through zero to a maximum negative value, and back again to zero. The voltage makes a similar pattern, rather like a wave.

The correct name for the shape of this waveform is sinusoidal or a sine wave.



At any point on this sine wave, the magnitude of the voltage (or current) is the distance to the time axis. When the waveform is below the zero line, the current has reversed direction.

# **Waveform Characteristics**

### Symmetrical Pattern

Note that the waveform is the same shape above and below the horizontal axis (symmetrical)—the positive and negative parts vary in the same way.

The horizontal axis can be divided into degrees of rotation rather than units of time. One complete rotation or cycle equals 360°.

# Figure 5-4 The waveform of ac voltage (or current) showing degrees of rotation of the rotor

This graph shows how the output voltage (or current) of the generator varies with the position of the rotor.

# **AC Frequency**

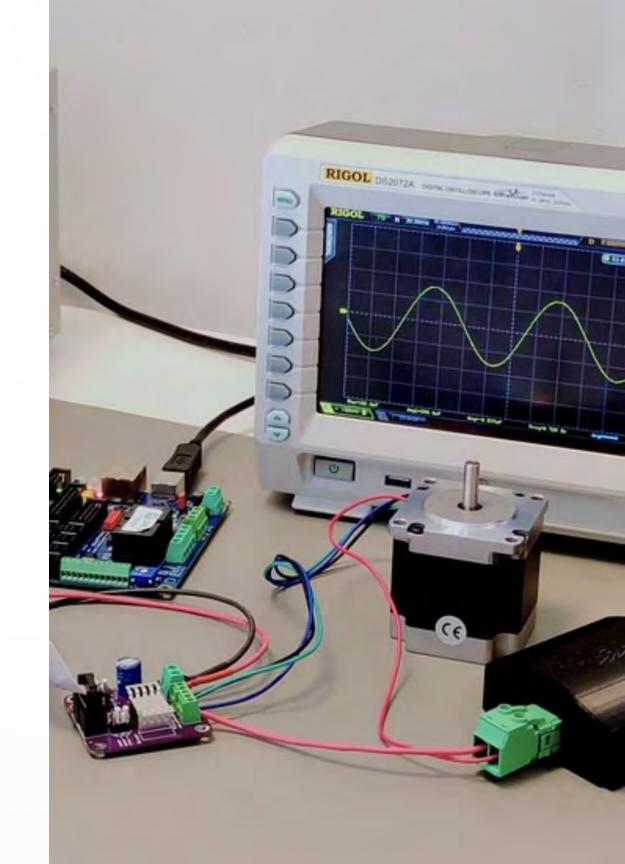
60

1/120

Hertz

Seconds

Standard AC frequency in Canada


Time current flows in one direction

360°

Degrees

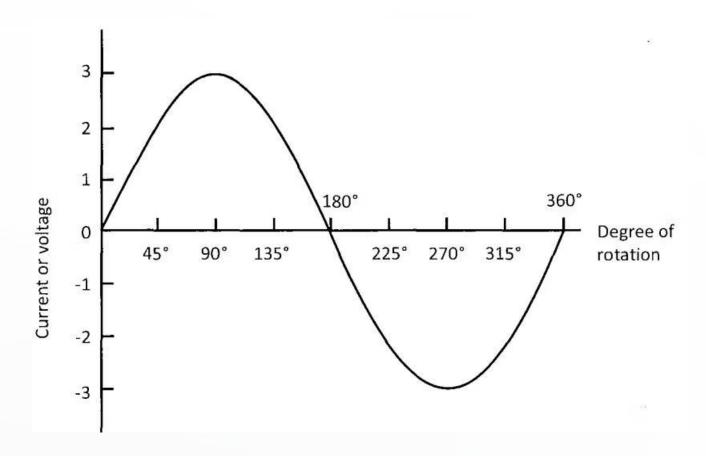
One complete cycle

In Canada, standard AC electrical power goes through 60 complete cycles each second. That is, its frequency is 60 cycles per second or 60 hertz (60 Hz). A simple generator would turn 60 times each second to produce power at 60 hertz.



## Phase in AC Circuits

### What is Phase?

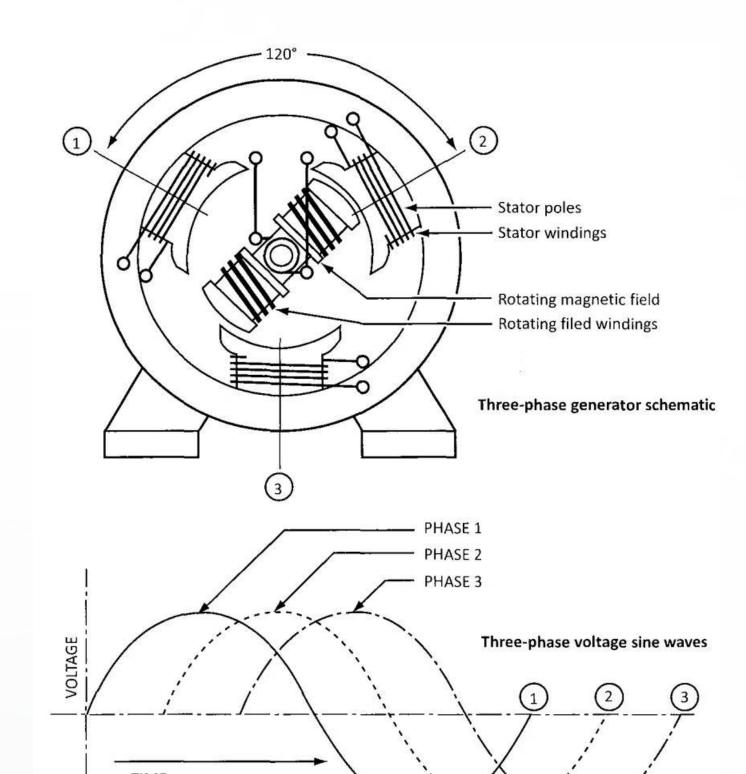

Phase can be described as the difference in electrical degrees between two waveforms.

### Single-Phase Generator

A single-phase generator produces one alternating (sinusoidal) voltage waveform.

### Three-Phase Generator

Three-phase generators are connected to provide three separate circuits. Each of these circuits carries a sinusoidal voltage waveform. The three waveforms are displaced by 120° from each other.




### Three-Phase Generator Windings

### Three-Phase Configuration

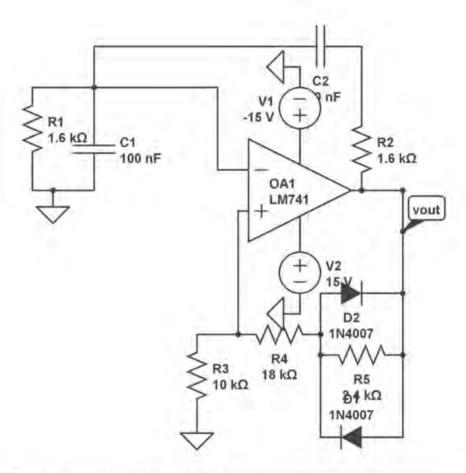
Three-phase generators have three separate windings that produce three voltage waveforms displaced by 120° from each other.

This configuration provides more efficient power generation and transmission compared to single-phase systems.



# Calculating Alternating Current

### Root-Mean-Square (RMS) Values


Alternating current is calculated by determining the effective work that the electric current performs or heat it generates. This is referred to as root-mean-square or RMS current.

RMS current is the peak current (Imax or Im) divided by square root of 2 (0.707):

Irms =  $0.707 \times Imax$ 

Similarly for voltage:

 $Vrms = 0.707 \times Vmax$ 



Anvesh Voona (anvesh) / sine wave generator http://circuitlab.com/c7u8m5c

Residential voltages in North America are 120 V, which is the RMS voltage. The actual supplied voltage is alternating according to a sine curve with a peak of approximately 170 V.

## **Circuit Characteristics**

### Inductance

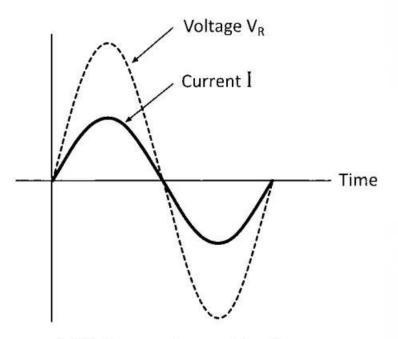
Predominates in motor circuits



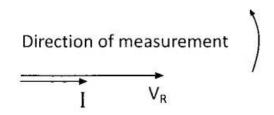
Every real electrical circuit exhibits a combination of resistance, inductance, and capacitance. The nature of the circuit determines which of these quantities predominates. Whichever quantity predominates, the other two are always present to some extent or other—although, from a practical point of view, at least one of the others is so insignificant that you may ignore it.

# **Key Electrical Quantities**

| Quality     | Symbols | Definition                                                                                                                              | Measured in    |
|-------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Resistance  | R       | Ratio of applied emf to the resulting current in a circuit and the real component of impedance in an ac circuit                         | Ohm $(\Omega)$ |
| Reactance   | X       | Depends upon a circuit's inductance or capacitance and the frequency of the supply voltage                                              | Ohm $(\Omega)$ |
| Impedance   | Z       | Total opposition to the flow of current in a circuit and consists of a circuit's resistance and reactance                               | Ohm $(\Omega)$ |
| Inductance  | L       | Property of an electric circuit by virtue of which a varying current induces an emf in that circuit or an adjacent circuit              | Henry (H)      |
| Capacitance | C       | Ratio of a quantity of electricity to a potential difference and ability of conductors separated by dielectric material to store energy | Farad (F)      |


# **Purely Resistive Circuit**

### **Current and Voltage Relationship**


When an AC current flows through pure resistance, a voltage-drop (VR) occurs across that resistance. You use Ohm's law to calculate the value of that voltage-drop: VR = IR.

When the current is maximum, the corresponding voltage-drop is also maximum; as the current falls to zero and reverses direction, the resulting voltage-drop also falls to zero and changes direction.

### voltage and current in phase



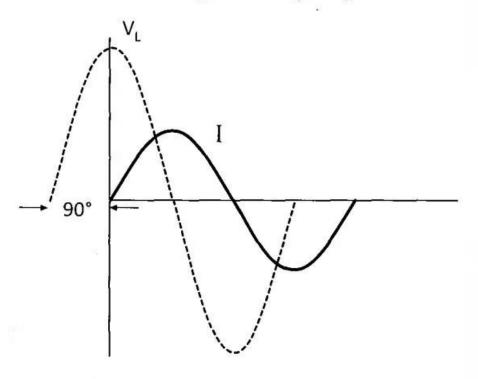
(a) Voltage and current in phase



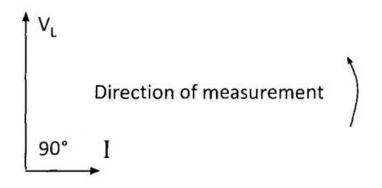
(b) Phasor diagram showing voltage and current in phase

In a purely resistive circuit, the current and voltage are in phase with each other.

The phasor diagram shows the current and voltage phasors lie along the same direction because they are in phase.


### **Purely Inductive Circuit**

### **Current and Voltage Relationship**


When an AC current flows through pure inductance, a voltage (VL) appears across that inductance. The opposition to current is inductive-reactance (XL), so  $VL = I \times XL$ .

The changing current induces the voltage (VL) into the inductance. The greater the rate of change of current, the greater this voltage. The greatest rate of change occurs as the current passes through zero, so this is where the maximum voltage occurs.

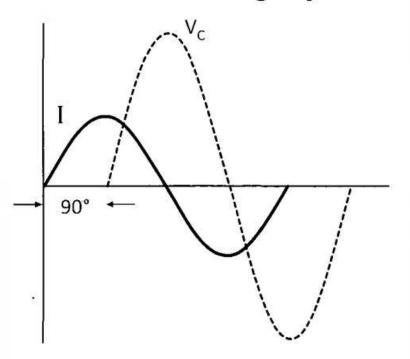
Figure 5-7
Current lags voltage by 90°



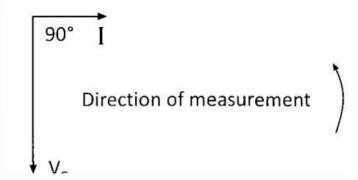
(a) Current lags voltage by 90°



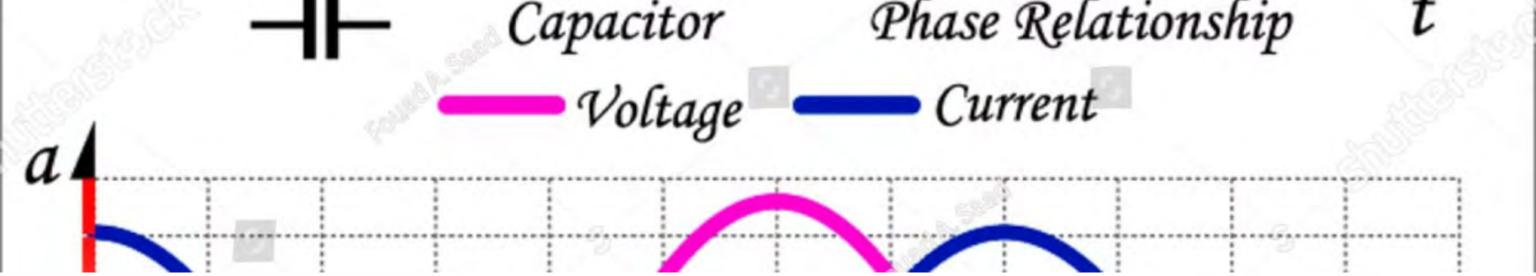
(b) Phasor diagram showing current lagging voltage


# **Purely Capacitive Circuit**

### **Current and Voltage Relationship**


When an AC current flows through pure capacitance, a voltage (VC) appears across that capacitance. The opposition to current is capacitive-reactance (XC), so  $VC = I \times XC$ .

The voltage (VC) builds up across the plates of the capacitor as the current flows onto those plates. This voltage increases as the current decreases and reaches its maximum value as the current falls to zero.


Figure 5-8
Current leads voltage by 90°



(a) Current leads voltage by 90°



In a purely capacitive circuit, the current peaks ahead of the voltage by 90°. It is said to lead the voltage by 90°. The phasor diagram shows a 90° angle between the



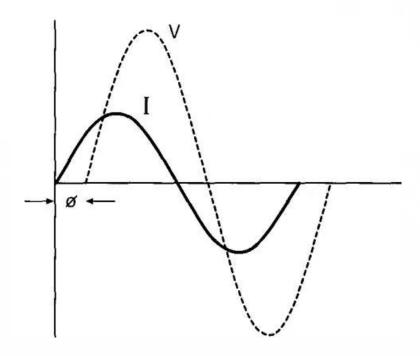
# Phase Relationships Summary

Resistive Circuit

Current and voltage are in phase (0° phase difference)

Inductive Circuit
Current lags voltage by 90°

Capacitive Circuit


Current leads voltage by 90°

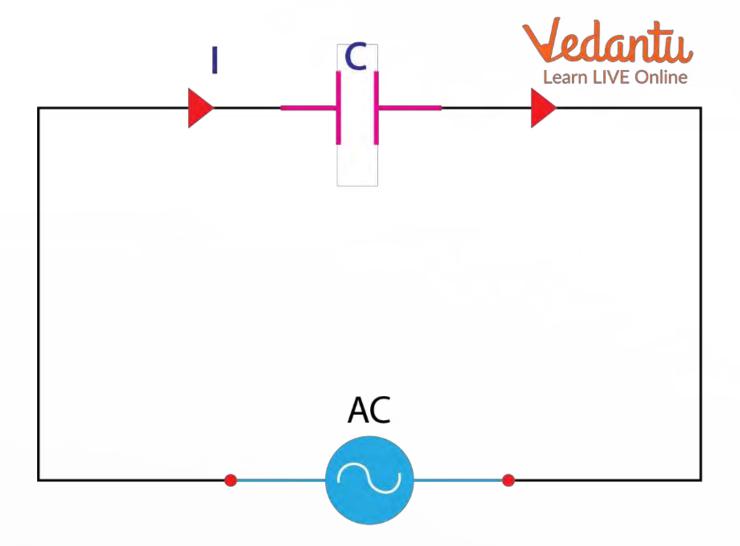
# Resistive-Inductive (R-L) Circuit

### **Combined Effect**

Many real circuits are resistive-inductive (R-L) circuits. An R-L circuit is one that has both resistance and inductance.

If the current in a purely resistive circuit is in phase with the voltage-drop, and the current in a purely inductive circuit lags the voltage-drop by  $90^{\circ}$ , then it follows that, in an R-L circuit, the current will lag the voltage by some angle between  $0^{\circ}$  and  $90^{\circ}$ .




This angle is called the phase angle ( $\phi$ , Greek letter phi). Exactly what this angle will be depends on the values of the circuit's resistance and inductive-reactance.

## Resistive-Capacitive (R-C) Circuit

#### **Combined Effect**

Less common than R-L circuits, R-C circuits are those that have both resistance and capacitance.

Current in an R-C circuit leads the voltage by some angle (the phase-angle,  $\phi$ ) between 0° and 90°.



The exact phase angle depends on the relative values of resistance and capacitive reactance in the circuit.

#### Resistance in Electrical Circuits

#### Definition

In purely resistive circuits, the opposition to current is resistance. Resistance (R) depends upon the length, cross-sectional area, and material of a conductor.

#### Measurement

Resistance is measured in ohms  $(\Omega)$ .

#### Ohm's Law

The relationship between voltage, current, and resistance is defined by Ohm's Law:  $V = I \times R$ 

#### **Applications**

Resistance predominates in heating circuits and other applications where electrical energy is converted to heat.

# • Different physical sizes have different wattage ratings. • Different physical 1/8 watt (RC) 0.063" x 0.157" 1/4 watt (RC) 0.092" x 0.253" 1/2 watt (RC) 0.142" x 0.387" 1 watt (RC) 0.226" x 0.578" 2 watt (RC) 0.310" x 0.702"

## Reactance in Electrical Circuits

#### Definition

In purely inductive or capacitive circuits, the opposition to current is called reactance. There are two types:

- Inductive reactance (XL)
- Capacitive reactance (XC)

#### Calculation

Reactance depends upon a circuit's inductance (L) or capacitance (C) and the frequency (f) of the supply voltage. It is calculated as follows:

(Inductive reactance)  $XL = 2\pi fL$ 

(Capacitive reactance) XC =  $1/(2\pi fC)$ 

Reactance is measured in ohms ( $\Omega$ ).

## Impedance in Electrical Circuits

#### Definition

Impedance (Z) is the total opposition to the flow of current and consists of a circuit's resistance and reactance.

#### Calculation

For circuits with resistance and inductive reactance:

$$Z = \sqrt{(R^2 + XL^2)}$$

For circuits with resistance and capacitive reactance:

$$Z = \sqrt{(R^2 + XC^2)}$$

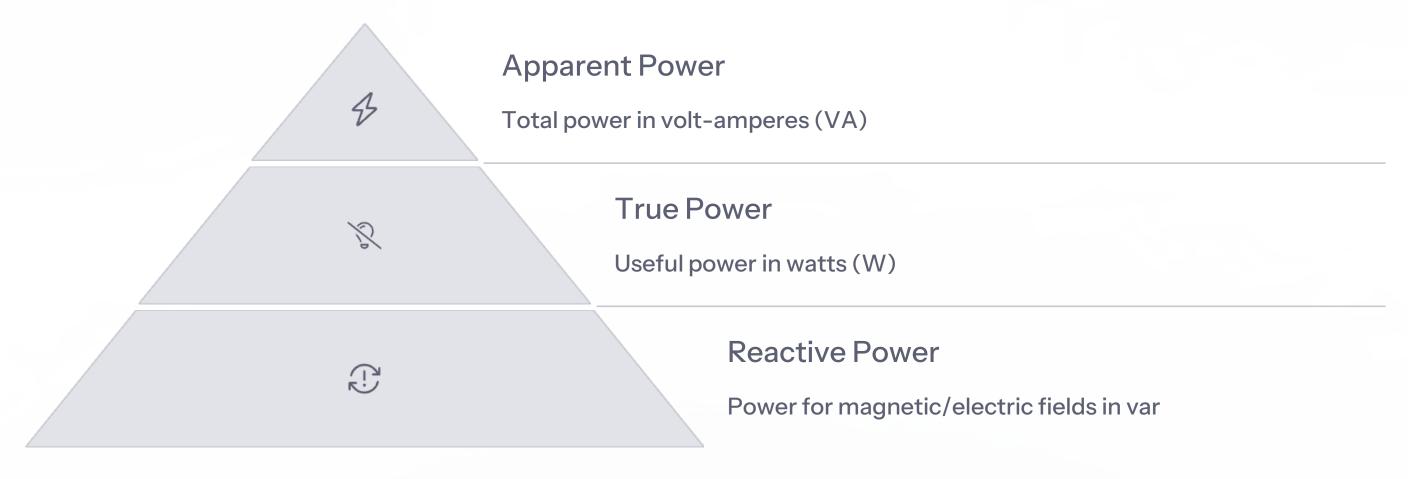
For circuits with resistance, inductive reactance, and capacitive reactance:

$$Z = \sqrt{(R^2 + (XL - XC)^2)}$$

Impedance is measured in ohms ( $\Omega$ ).

## Power in AC Circuits

#### Phase Angle and Power Factor


The angle between the voltage and current sine curves is measurable. This angle is called the phase angle ( $\phi$ , Greek letter phi).

The cosine of this angle is the power factor of the circuit. A circuit's power factor varies between 0 (corresponding to a phase angle of 90°) and 1 (corresponding to 0°).

#### Types of Power

- True power (or useful power, or active power) measured in watts (W)
- Reactive power measured in reactive volt amperes (var)
- Apparent power measured in volt amperes (V·A)

## Power Relationships in AC Circuits



The relationship between the three forms of power is based on the Pythagorean Theorem: (Apparent power)<sup>2</sup> = (True power)<sup>2</sup> + (Reactive power)<sup>2</sup> or Apparent power =  $\sqrt{\text{((True power)}^2 + (Reactive power)}^2)}$ 

# Power Calculations in AC Circuits

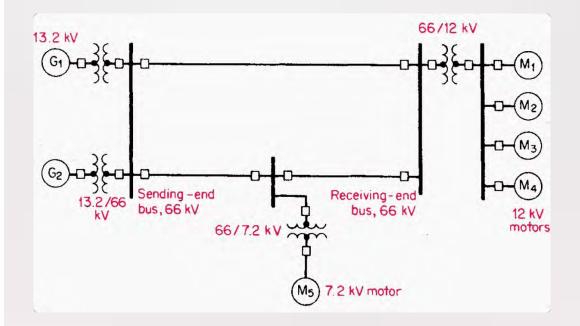


#### **Apparent Power Calculation**

Apparent power = Voltage × Current



#### **Power Factor Consideration**


Power factor =  $cos(\phi)$ 



#### **True Power Calculation**

True power = Apparent power × Power factor

True power = Voltage × Current × Power factor



## Power Factor Importance

#### **Efficiency Considerations**

For a given value of true power, the apparent power increases as the power factor falls. For low values of power factor, a generator must produce a large amount of apparent power in order to supply a relatively small amount of true power.

#### **Optimization Goal**

As the apparent power determines the amount of current that a generator supplies, it is desirable to make the value of the apparent power as close as possible to the true power.

This can be achieved by ensuring that the circuit's power factor is as high (as close to 1) as possible.

## Capacitance in AC Circuits

#### What is a Capacitor?

The capacitor consists of two aluminum electrodes (plates) with dielectric material between them. The non-conducting dielectric prevents electron flow between the plates but allows storage of an electrical charge.

The DC resistance of a capacitor is infinite ( $\infty$ ).

## STRUCTURE OF CERAMIC CAPACITOR **Protective Coating** Electrode Dielectric **Terminals** (Connecting Wire)

## shutterstick\* IMAGE ID: 2310097385 www.shutterstock.com

SIDE VIEW

Capacitors store electrical energy in an electric field between their plates. They are essential components in many AC circuits, particularly in motor applications.

**FRONT VIEW** 

## Types of Capacitors for Gas Technicians



#### **Starting Capacitors**

The starting capacitor consists of two aluminum plates separated by a dielectric of chemically treated paper, impregnated with non-conducting electrolyte. Starting capacitors are available with capacitance ratings from 75 to 600 microfarads (μF) and with voltage ratings of 110 V to 330 V.



#### **Running Capacitors**

Running capacitors stay in the motor circuit for the entire cycle of operation. For this reason, they must have some means of dissipating the resulting heat. They do this by means of an oil-filled case. The oilfilled running capacitor is larger than the starting capacitor, but its capacity is smaller.

## **Starting Capacitors**

#### **Physical Characteristics**

Starting capacitors have relatively small cases. They are only used for a short period on each cycle of the motor they serve. Therefore, they have no need to dissipate heat, although their capacity is larger than that of running capacitors.

#### **Technical Specifications**

- Capacitance: 75 to 600 microfarads (μF)
- Voltage ratings: 110 V to 330 V
- Construction: Aluminum plates with paper dielectric
- Electrolyte: Non-conducting, chemically treated

## **Running Capacitors**

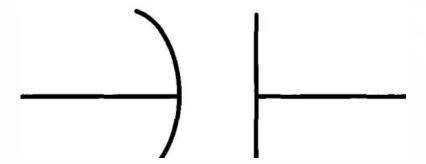
#### **Physical Characteristics**

Running capacitors stay in the motor circuit for the entire cycle of operation. For this reason, they must have some means of dissipating the resulting heat. They do this by means of an oil-filled case.

#### Comparison to Starting Capacitors

- Larger physical size due to oil-filled case
- Smaller capacitance value
- Designed for continuous operation
- Better heat dissipation capabilities

## Capacitors in Parallel


#### **Calculation Method**

The capacitance (e.g.,  $\mu F$ ) of two or more capacitors connected in parallel is the sum of the individual capacitances.

For capacitors in parallel:

Ctotal = C1 + C2 + C3 + ...

Figure 5-10
Parallel capacitance



This diagram shows how capacitors are connected in parallel and how their total capacitance is calculated.

## Capacitors in Series

#### **Calculation Method**

For capacitors in series, the total capacitance is calculated using the reciprocal formula:

For two capacitors in series, this simplifies to:

$$Ctotal = (C1 \times C2) / (C1 + C2)$$

Figure 5-11
Series capacitance

This diagram shows how capacitors are connected in series and how their total capacitance is calculated.

## Capacitor Calculation Example

#### Series Connection Example

For two capacitors in series with values of 10  $\mu$ F and 15  $\mu$ F:

Ctotal = 
$$(10 \mu F \times 15 \mu F) / (10 \mu F + 15 \mu F)$$

Ctotal = 150  $\mu$ F / 25  $\mu$ F

Ctotal = 6 µF

$$C_T = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}}$$
 or for 2 capacitors in series  $C_T = \frac{C_1 \times C_2}{C_1 + C_2}$ 

$$C_{T} = \frac{C_{1} \times C_{2}}{C_{1} + C_{2}}$$

#### Parallel Connection Example

For two capacitors in parallel with values of 10  $\mu$ F and 15  $\mu$ F:

Ctotal = 10 
$$\mu$$
F + 15  $\mu$ F

Ctotal = 
$$25 \mu F$$



## Practical Applications of DC

#### **Electronic Devices**

Smartphones, tablets, computers, and other personal electronics typically operate on DC power, often supplied by batteries or AC adapters that convert AC to DC.

#### **Automotive Systems**

Vehicle electrical systems use DC power from the battery and alternator to operate lights, ignition systems, and other electrical components.

#### **Small Appliances**

Many portable appliances and tools use DC power from batteries or power adapters.

#### Solar Power Systems

Solar panels generate DC electricity which can be used directly or converted to AC for home use.



## Practical Applications of AC

#### **Residential Power**

Homes are supplied with AC power for lighting, appliances, and other electrical needs.

#### **Industrial Motors**

Most industrial machinery uses AC motors due to their efficiency and power.

#### **Power Transmission**

Electrical grids transmit power over long distances using high-voltage AC.

#### **HVAC Systems**

Heating, ventilation, and air conditioning systems typically use AC power for their motors and controls.

## Electrical Safety for Gas Technicians



#### Always Verify Power is Off

Use a properly rated multimeter to confirm power is disconnected before working on any electrical component.



#### Use Proper Personal Protective Equipment

Wear insulated gloves and use insulated tools when working with electrical components.



#### **Know Your Limits**

Only perform electrical work you are trained and qualified to do. Refer complex issues to licensed electricians.



#### Respect Electrical Hazards

Both AC and DC can be dangerous. Never underestimate the potential for electrical shock or arc flash.





## **Troubleshooting Capacitor Issues**

#### **Identify Symptoms**

Motor fails to start, hums, runs slowly, or overheats. These can all be signs of capacitor problems.

#### Visual Inspection

Look for bulging, leaking, or other physical damage to the capacitor. A damaged capacitor must be replaced.

#### Test the Capacitor

Use a capacitor tester or multimeter with capacitance function to check if the capacitor is within its rated value range.

#### Replace if Necessary

Always replace with a capacitor of the same type, voltage rating, and capacitance value.

## Measuring AC Voltage and Current

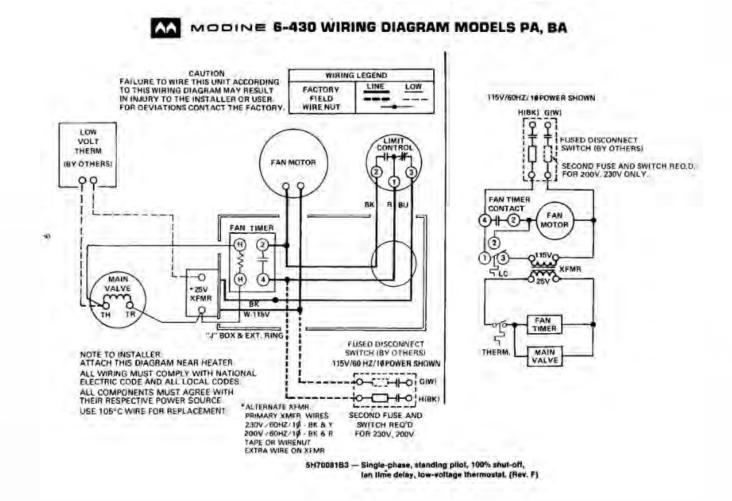
#### **Digital Multimeters**

Modern digital multimeters can measure both AC and DC voltage and current. When measuring AC, the meter typically displays the RMS value.

Always ensure the meter is set to the correct function (AC or DC) and an appropriate range before taking measurements.

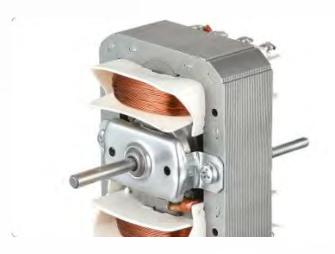
#### **Safety Precautions**

- Use meters rated for the voltage being measured
- Use proper test leads with adequate insulation
- Keep hands behind protective barriers on test probes
- Avoid contact with conductive surfaces while testing


## Electrical Diagrams for Gas Appliances

#### Reading Electrical Schematics

Gas technicians must be able to interpret electrical diagrams to troubleshoot and repair gas appliances with electrical components.


#### Common symbols include:

- Switches and relays
- Capacitors
- Motors
- Transformers
- Thermostats and sensors




Electrical diagrams show the connections between components and help technicians understand how the electrical system functions.

#### Motor Types in Gas Appliances



#### **Shaded Pole Motors**

Simple, low-starting torque motors often used in fans and blowers. They have no capacitor and are the least expensive type of motor.



#### Permanent Split Capacitor (PSC) Motors

Use a running capacitor to create phase shift. More efficient than shaded pole motors and commonly used in furnace blowers and condenser fans.

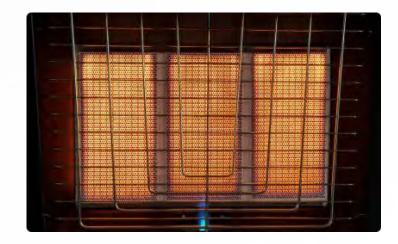


#### **Capacitor Start Motors**

Use a starting capacitor to provide high starting torque. The capacitor is disconnected once the motor reaches about 75% of rated speed.

## Transformers in Gas Appliances

#### **Function and Purpose**


Transformers in gas appliances typically step down the supply voltage (120V or 240V AC) to lower voltages needed for control circuits (24V AC is common).

They work on the principle of electromagnetic induction between coils of wire.

#### **Common Applications**

- Powering electronic control boards
- Operating gas valves
- Supplying voltage to ignition systems
- Powering thermostats and other low-voltage controls

#### Ignition Systems in Gas Appliances



#### **Standing Pilot Systems**

Traditional system with a continuously burning pilot flame. Uses a thermocouple to generate a small DC voltage (25-30 millivolts) that keeps the gas valve open.

#### Intermittent Pilot Ignition

Uses AC voltage to create a spark that lights a pilot only when heat is called for. More efficient than standing pilot systems.



#### **Direct Spark Ignition**

Creates a high-voltage spark directly at the main burner without using a pilot. Requires AC power and electronic control circuits.

## Thermocouples and Thermopiles

#### Thermocouple Operation

A thermocouple consists of two dissimilar metals joined together. When heated by a pilot flame, it generates a small DC voltage (typically 25-30 millivolts).

This voltage energizes an electromagnet in the gas valve, keeping it open as long as the pilot is lit. If the pilot goes out, the voltage drops and the valve closes for safety.

#### Thermopile Operation

A thermopile is essentially multiple thermocouples connected in series to generate a higher voltage (around 250-750 millivolts DC).

This higher voltage can operate more complex gas valves and sometimes power additional controls without requiring external electricity.

## **Electronic Control Boards**

#### Function in Gas Appliances

Modern gas appliances often use electronic control boards that manage all aspects of operation, including:

- Ignition sequence timing
- Safety monitoring
- Temperature control
- Fan and motor operation
- Diagnostic functions

#### **Power Requirements**

Control boards typically operate on low-voltage AC (24V) supplied by a transformer, but may convert this to DC internally for microprocessor operation.

Some boards include capacitors for filtering and stabilizing the power supply.

## **Electrical Testing Equipment**













Gas technicians use various electrical testing equipment to diagnose problems in gas appliances. Digital multimeters can measure voltage, current, resistance, and sometimes capacitance. Specialized tools like microamp meters measure flame sensing current, while capacitor testers verify proper capacitor operation.

## **Electrical Troubleshooting Process**



#### **Gather Information**

Collect symptoms, history, and any error codes from the appliance



#### **Visual Inspection**

Look for obvious issues like damaged wires, burnt components, or loose connections



#### **Check Power Supply**

Verify proper voltage is reaching the appliance and its components



#### **Component Testing**

Test individual components like capacitors, motors, switches, and sensors



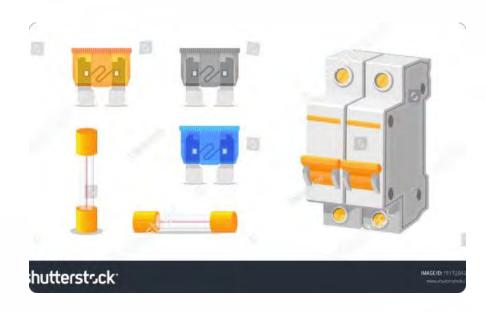
#### Repair or Replace

Fix the identified issues and verify proper operation

## **Electrical Safety Devices**






Protect against overcurrent conditions by automatically interrupting the circuit when current exceeds the rated value.

They can be reset after tripping.



## Ground Fault Circuit Interrupters (GFCIs)

Detect imbalances in current flow that could indicate a ground fault. They quickly disconnect power to prevent electrical shock hazards.



#### Fuses

One-time protection devices that contain a metal strip that melts when current exceeds the rated value. They must be replaced after blowing.

## **Electrical Grounding**

#### **Purpose of Grounding**

Electrical grounding serves several important safety functions:

- Provides a path for fault current to safely return to the source
- Helps trip circuit breakers quickly during a fault
- Prevents metal parts of appliances from becoming energized
- Protects people from electrical shock

#### Grounding in Gas Appliances

Gas appliances with electrical components must be properly grounded according to local electrical codes and manufacturer specifications.

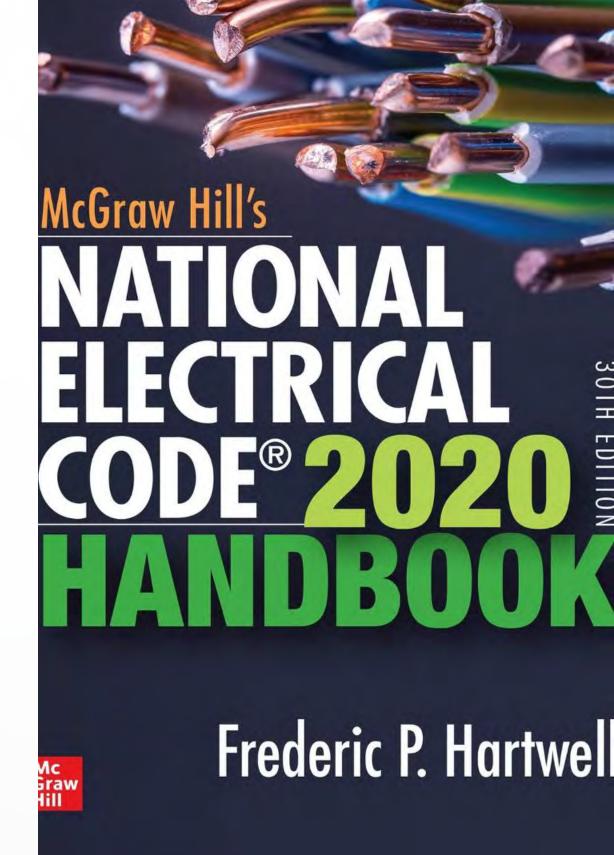
Improper grounding can lead to electrical shock hazards, erratic operation, and damage to electronic components.

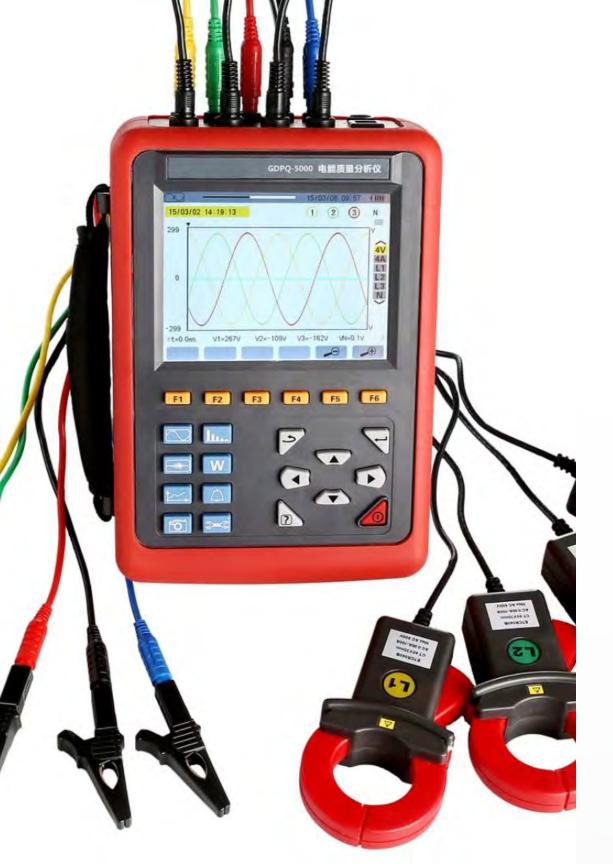
#### **Electrical Codes and Standards**

#### National Electrical Code (NEC)

Sets the foundation for electrical safety in residential, commercial, and industrial installations.

#### Canadian Electrical Code (CEC)


The Canadian standard for safe electrical installations, published by the Canadian Standards Association.


#### **Local Codes**

Many jurisdictions have additional requirements that supplement national codes.

#### Manufacturer Specifications

Equipment must be installed according to manufacturer instructions, which may have specific electrical requirements.





## Power Quality Issues



#### Voltage Sags and Swells

Temporary decreases or increases in voltage that can affect equipment operation.

#### س

#### Harmonics

Distortions in the voltage or current waveform that can cause overheating and equipment malfunction.



#### Power Interruptions

Complete loss of power that can disrupt operation and potentially damage equipment during restart.



#### Transients/Surges

Brief, high-voltage spikes that can damage electronic components in gas appliances.

## **Energy Efficiency in Electrical Systems**

#### **Motor Efficiency**

Modern high-efficiency motors use less electricity to produce the same mechanical output. They typically have:

- Better materials and design
- Lower resistance windings
- Improved bearings
- Better cooling

#### Variable Frequency Drives (VFDs)

VFDs allow motors to operate at variable speeds rather than just on/off, which can significantly reduce energy consumption in applications with varying load requirements.

They work by converting fixed-frequency AC power to variable-frequency output, allowing precise control of motor speed and torque.

| Centimeters (cm)   | 0.3937 | Inches (in)           | 2.54   | Centimeters (cm)   |  |
|--------------------|--------|-----------------------|--------|--------------------|--|
| Meters (m)         | 3.2808 | Feet (ft)             | 0.3048 | Meters (m)         |  |
| Meters (m)         | 39.37  | Inches (in)           | 0.0254 | Meters (m)         |  |
| Square Meters (m²) | 10.76  | Square Feet (sq. ft.) | 0.0929 | Square Meters (m²) |  |

## **Electrical Measurements and Units**

| Quantity    | Symbol | Unit   | Unit Symbol |
|-------------|--------|--------|-------------|
| Voltage     | VorE   | Volt   | V           |
| Current     | I      | Ampere | Α           |
| Resistance  | R      | Ohm    | Ω           |
| Power       | Р      | Watt   | W           |
| Frequency   | f      | Hertz  | Hz          |
| Capacitance | С      | Farad  | F           |
| Inductance  | L      | Henry  | Н           |

#### Electrical Formulas for Gas Technicians

#### Ohm's Law

 $V = I \times R$ 

 $I = V \div R$ 

 $R = V \div I$ 

#### **Power Calculations**

 $P = V \times I$  (DC or AC with power factor = 1)

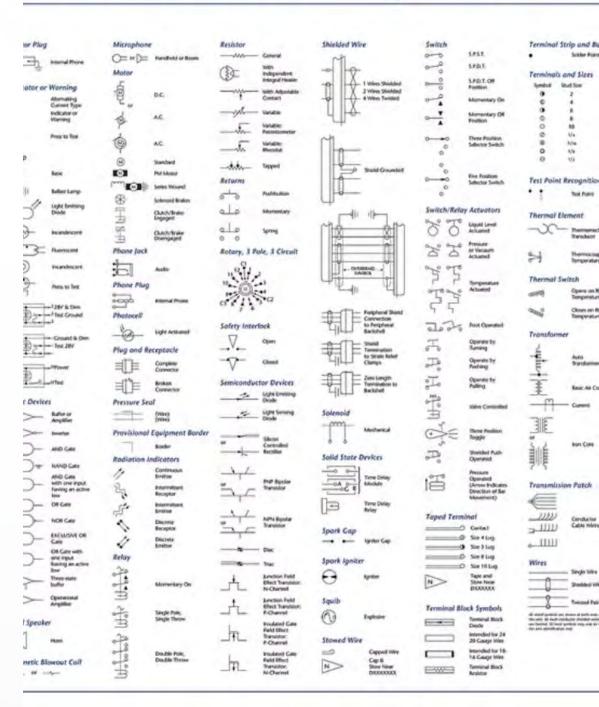
 $P = V \times I \times PF$  (AC with power factor)

 $P = I^2 \times R$ 

 $P = V^2 \div R$ 

#### Reactance Formulas

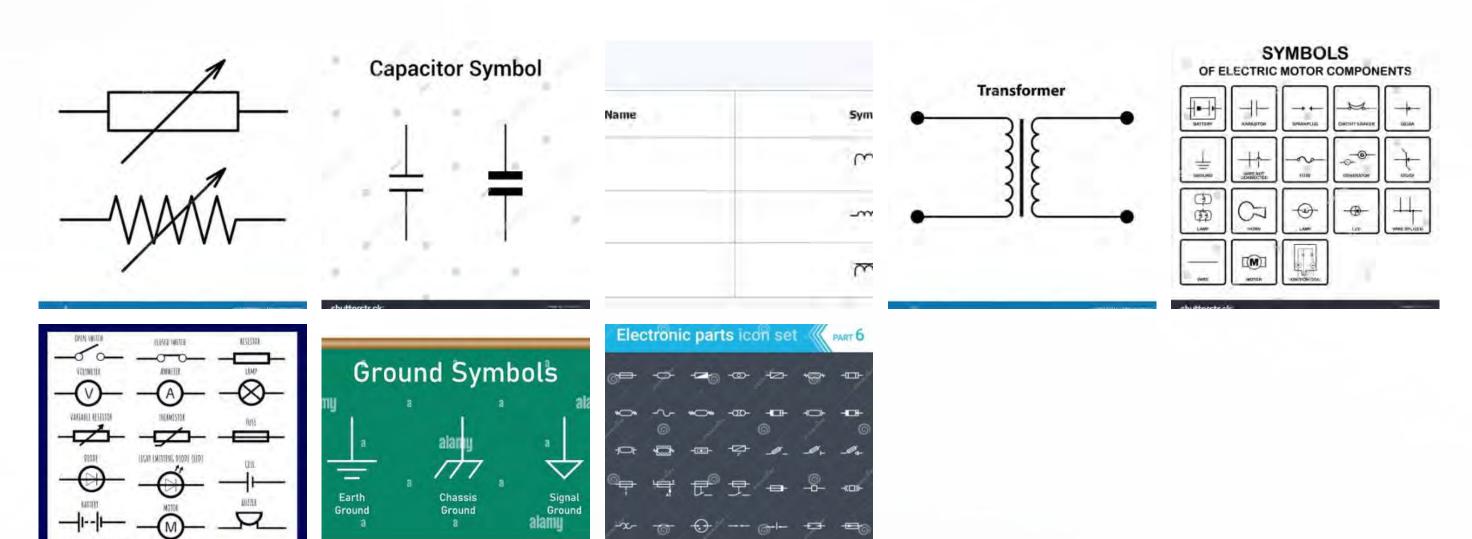
 $XL = 2\pi fL$  (Inductive reactance)


 $XC = 1/(2\pi fC)$  (Capacitive reactance)

#### Impedance Calculations

 $Z = \sqrt{(R^2 + X^2)}$  (For simple circuits)

 $Z = \sqrt{(R^2 + (XL - XC)^2)}$  (For RLC circuits)


# Electrical System



www.avotek.com • Toll Free: 1.800.828.6835 • Int'l: 1.540.234.9090

## Electrical Symbols in Diagrams

Switch ELECTRONICS



Gas technicians must be familiar with common electrical symbols used in wiring diagrams and schematics. These standardized symbols represent various components like resistors, capacitors, inductors, transformers, motors, switches, grounds, and fuses. Understanding these symbols is essential for properly interpreting diagrams when troubleshooting gas appliances with electrical components.

## Review of Key Concepts

#### **Direct Current**

Flows in one direction only, often supplied by batteries

#### Capacitance

Storage of electrical charge, important for motor operation



#### Alternating Current

Reverses direction periodically, standard for power distribution

#### Phase Relationships

Leading and lagging between current and voltage in AC circuits



## **Summary and Application**



#### Fundamental Knowledge

Understanding direct and alternating current theory is essential for gas technicians to properly work with electrical components in gas appliances.



#### **Safety Considerations**

Electrical safety is paramount when working with gas appliances that incorporate electrical components.



#### **Practical Application**

This knowledge enables proper sizing, connection, and troubleshooting of electrical equipment encountered in the gas industry.



#### **Continuous Learning**

As technology evolves, gas technicians must stay current with electrical theory and applications in modern gas equipment.

## CSA Unit 5

# Chapter 6 AC Power Supplies and Basic Transformer Theory

This presentation covers the fundamentals of 120-volt alternating current circuits typically present in residential applications, as well as transformer theory and operation. Gas technicians and fitters require this knowledge for proper sizing, connection, and troubleshooting of various types of transformers used in the gas industry.





## **Learning Objectives**



#### **Component Identification**

Describe basic component identification characteristics in a 120volt ac circuit



#### **Transformer Principles**

Describe the principles of transformer operation

Step-down transformer: Secondary voltage Vs < Primary voltage Vp

Step-down Transformer

Step-up Transformer

## **Key Terminology**

| Term        | Abbreviation (symbol) | Definition                                                                                                                                                                                                        |
|-------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transformer |                       | Electrical device that transfers energy between two or more circuits through electromagnetic induction and commonly helps increase or decrease the voltages of alternating current in electric power applications |



## Electrical Distribution System

Generation

Electricity is generated at power plants

**Transmission** 

High voltage transmission across long distances

Distribution

Voltages are stepped-down for local distribution

Consumption

120 volt AC reaches standard residential receptacles



## 120 Volt AC Receptacles

By the time electricity reaches a standard receptacle, such as that found in your home, the voltage has decreased to 120 volts ac from a much higher distribution voltage. Generally, electricity arrives at the receptacle inside a two-conductor cable and includes a ground wire.



## Wire Color Identification

White or Natural Grey

Insulated, neutral conductors

Black (sometimes red or blue)

Insulated live or hot conductors

Green

Only for ground conductors



## Receptacle Installation Requirements



#### **Conductor Length**

Each outlet must have at least 6 inches (150 mm) of free conductor for making joints or for the connection to receptacles



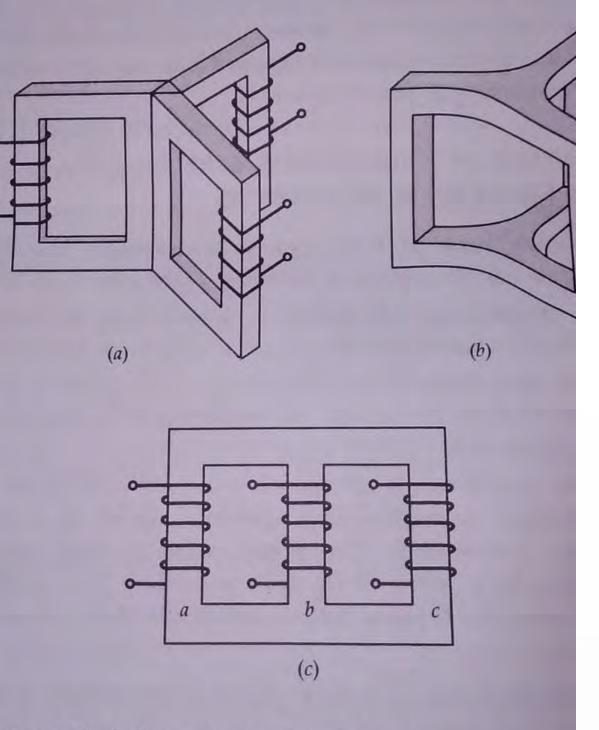
#### Terminal Identification

The neutral wire terminal has a metallic coating for identification, is made of metal that is substantially white (silvery) in colour, or has a "W" or "WHITE" marking adjacent to the terminal



#### **Ground Terminal**

The colour of the ground terminal (screw head, nut, or clamp) is green


## Introduction to Transformers

#### Definition

A transformer is an electrical device that transfers energy between two or more circuits through electromagnetic induction and commonly helps increase or decrease the voltages of alternating current in electric power applications.

#### Types

While most large-current transformers are three-phase, this presentation focuses on single-phase transformers for simplicity. The principle is the same for three phase, except that there are three sets of windings instead of just one.



pment of a 3-phase core-type transformer.

ee single-phase cores in contact with another.

same, with central limb removed because it carries no flux
al construction, with the three limbs in the same plane.

## Single-Phase Transformer Components



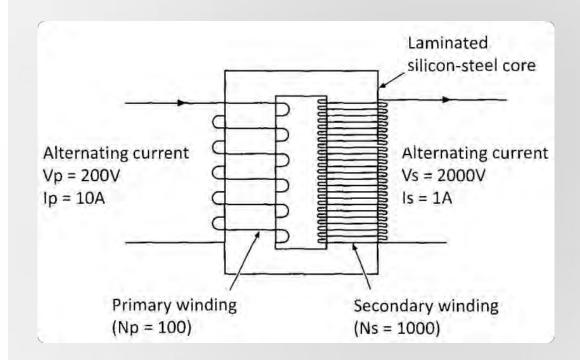
**Primary Winding** 

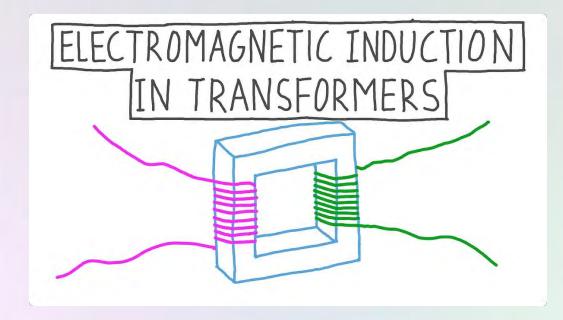
The winding that receives the input voltage



Secondary Winding

The winding that delivers the output voltage





Core

Usually made of iron to concentrate the magnetic field

## Single-Phase Transformer Operation

Figure 6-1 shows a transformer core with a primary winding and a secondary winding. The windings are actually wound around each other on a real transformer. However, for simplicity of understanding, the figure shows two separate windings. The current is supplied to the primary winding and the output is from the secondary winding. In this example, there are 100 turns (Np= 100) in the primary and 1000 turns (Ns = 1000) in the secondary.





## Electromagnetic Induction in Transformers

#### **Current Flow**

When the primary winding of this transformer takes an alternating voltage, a current flows

#### Magnetic Field Generation

A magnetic field develops around the winding and fluctuates at 60 Hz

#### Flux Lines

The flux lines cut through the secondary winding

#### Voltage Induction

A voltage is induced into the secondary winding through electromagnetic induction

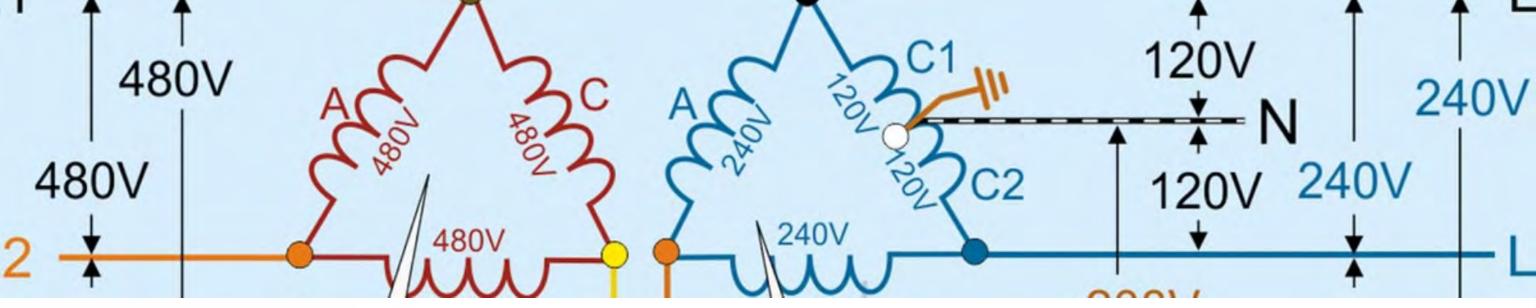
## Step-Up Transformers

#### Definition

A step-up transformer has more turns in the secondary winding than in the primary winding, resulting in a higher output voltage than input voltage.

#### Example

In Figure 6-1, the secondary coil has 1000 turns and the primary has 100 turns. This means that the secondary voltage is 10 times the primary voltage (1000  $\div$  100). Since the primary voltage is 200 V, then the secondary voltage will be 2000 V (200 x 10).


## Step-Down Transformers

#### Definition

A step-down transformer has fewer turns in the secondary winding than in the primary winding, resulting in a lower output voltage than input voltage.

#### Operation

In a step-down transformer, the operation is exactly the same as a step-up transformer. However, the secondary winding has fewer turns than the primary winding so the secondary voltage is less than the primary voltage. Also, the secondary current is greater than the primary current.



## **Transformer Output Calculation**

#### Voltage Ratio Formula

You can calculate the secondary (output) voltage of a transformer by multiplying the primary voltage by the ratio of turns in the secondary to primary coils.

Vs/Vp = Ns/Np

#### Variables

Vs = secondary voltage

Vp = primary voltage

Ns = turns in secondary coil

Np = turns in primary coil

## **Transformer Current Calculation**

#### **Power Conservation**

Transformer efficiency is very high, so the output power is very close to the input power. Since power is a function of the voltage times the current, you can calculate the secondary current if you know the primary current.

Vplp = Vsls

Therefore:  $Is = (Vp/Vs) \times Ip$ 

#### Example

In the example, the primary current is 10 A. Since output voltage increases by ten times and the power remains the same, the current must decrease by ten times. The current in the secondary winding must therefore be 1 A.

## Wire Size in Transformers



## Step-Up Transformers

Since the secondary current is lower than the primary current in a step-up transformer, the size of the conductor in the secondary winding can be smaller



#### Winding Design

You can make the winding with the most turns of smaller-diameter wire



#### **Step-Down Transformers**

In step-down transformers, the secondary current is greater than the primary current, requiring larger wire for the secondary winding

## HF transformer efficiency [%] with standard #43 ferrite cores (Calculated with <a href="https://owenduffy.net/calc/toroid.htm">https://owenduffy.net/calc/toroid.htm</a>) 09/01/2021 HB9BCB

| 10-43<br>. turns | FT-240-43<br>3 prim. turns | FT-140-43<br>2 prim. turns | FT-140-43<br>3 prim. turns | FT-114-43<br>2 prim. turns | FT-114-43<br>3 prim. turns | FT-82-43<br>2 prim. turns | FT-8<br>3 prin |
|------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|---------------------------|----------------|
| 7                | 85                         | 59                         | 82                         | 28                         | 68                         | 23                        | 6              |
| 9                | 86                         | 62                         | 83                         | 33                         | 70                         | 28                        | 6              |
| 1                | 87                         | 64                         | 84                         | 38                         | 72                         | 33                        | 7              |
| 3                | 88                         | 66                         | 85                         | 41                         | 74                         | 37                        | 7              |
| 5                | 89                         | 68                         | 86                         | 45                         | 76                         | 41                        | 7              |
| 5                | 89                         | 69                         | 86                         | 46                         | 76                         | 43                        | 7              |
| 6                | 89                         | 70                         | 87                         | 47                         | 77                         | 44                        | 7              |
| 6                | 89                         | 70                         | 87                         | 49                         | 77                         | 45                        | 7              |
| 7                | 90                         | 71                         | 87                         | 50                         | 77                         | 46                        | 7              |

ers with a coupling ratio of 50:2450 ohms (1:49) do not achieve a good antenna coupling at 80 m



## Self-Regulation in Transformers

#### Load Change

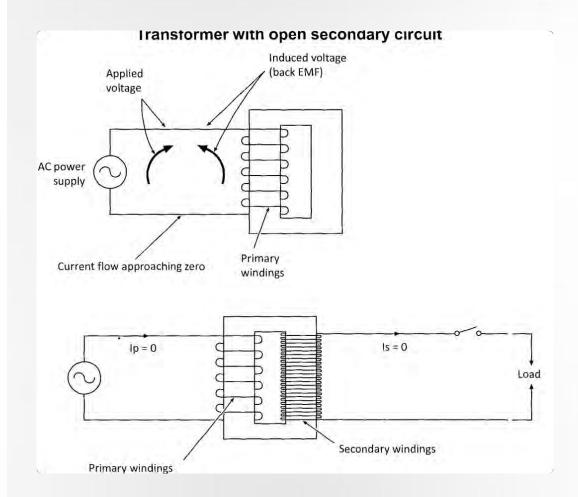
As the current flow through the secondary winding changes

#### **Circuit Protection**

If opening a switch or circuit breaker stops the secondary current, the primary current flow also stops



#### Primary Current Adjustment


The primary current also changes automatically

#### **Power Balance**

Input and output power remain balanced

## Transformer with Open Secondary Circuit

In the upper portion of Figure 6-2 is a simple coil of conductor that wraps around a steel core. An ac voltage applied to the coil normally results in a flow of current through the wire. In fact, since there are no resistors in this circuit, a large current flow results. This is the case in a de circuit. But in a properly designed alternating current circuit, very little current will flow.



### **Back EMF in Transformers**



#### **Alternating Current**

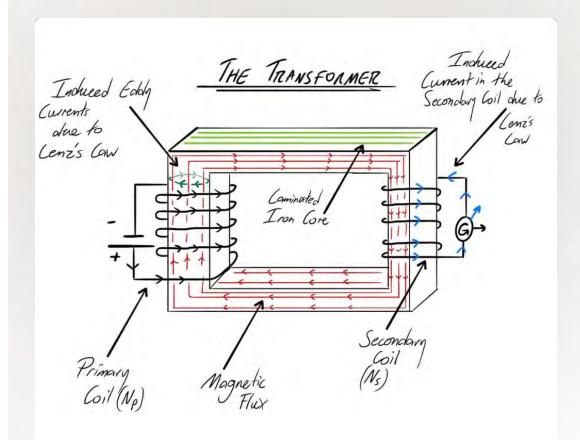
The alternating current causes a magnetic field to build up and collapse around the coils 120 times per second



#### Flux Lines

As the lines of flux pass through the primary winding, they induce a voltage in that winding




#### Induced Voltage

This induced voltage is the opposite of applied voltage and acts to limit applied voltage



#### **Voltage Cancellation**

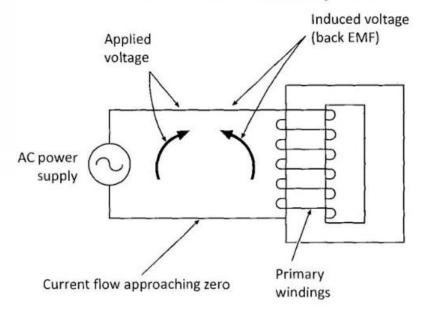
The two voltages (applied and induced) very nearly cancel each other out, so only a very small current flows

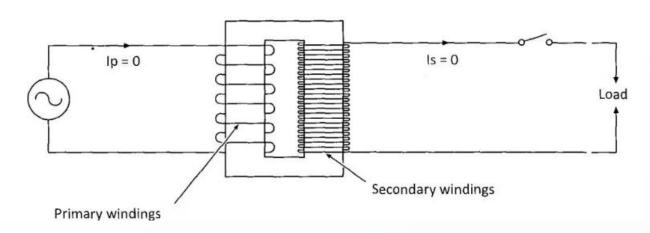


## Back EMF Example

#### Example

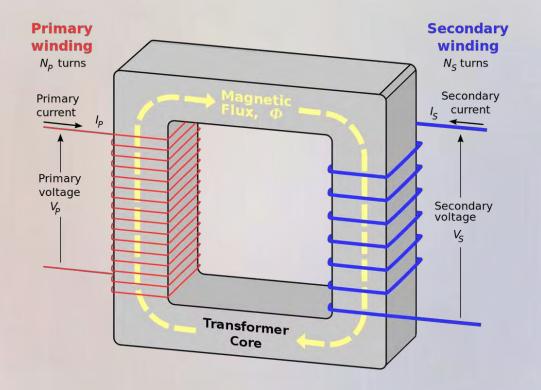
If a 60 Hz supply is connected to the coil with a voltage of 220 V, the fluctuating magnetic field induces a voltage in the winding that is equal to the applied voltage, but in the opposite direction.


#### Terminology


The induced voltage is often what you call back emf.

Another term for source voltage is electromotive force (emf). Back emf plays an important part in limiting the current flow through electric machines.

## Transformer with Open Secondary Circuit


#### Transformer with open secondary circuit





The bottom part of Figure 6-2 shows a simple transformer with the secondary circuit open at the switch. Since no current flows through this circuit, it has no effect on the transformer, which operates as though there were only one coil.

Thus, when the secondary circuit is open, the primary current flow decreases to a very small value. Although there is no current flow in the secondary circuit, the field produced by the very small primary current maintains the terminal voltage of the transformer's secondary winding's terminal voltage.

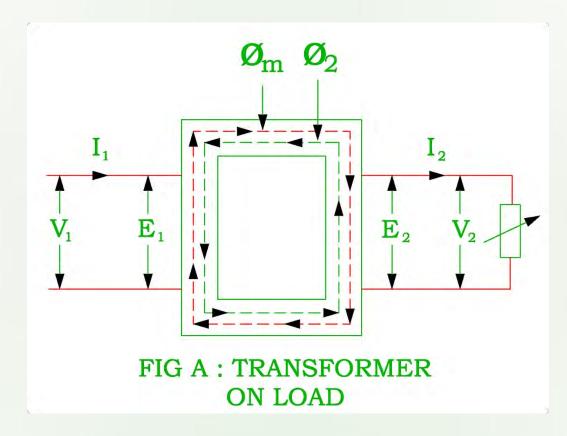


## Transformer Under Load

#### **Switch Closure**

When the switch is closed and a small load is placed across the secondary circuit, enough current flows to supply this load

#### Secondary Magnetic Field


This current flow in the secondary winding now produces a magnetic field of its own

#### **Field Opposition**

The magnetic field that the secondary winding current produced is opposite the magnetic field that the primary winding current produced

#### **Primary Field Reduction**

Because the secondary field opposes the primary field, the primary field is reduced



### **Back EMF and Current Flow**

 $\mathbb{T}_{\mathbb{T}}$ 

#### Reduced Primary Field

The primary field is reduced due to the opposing secondary field

#### Reduced Back EMF

This is the magnetic field that produced the back emf. Since the primary field is reduced, the back emf is reduced in the primary winding



#### **Increased Primary Current**

The reduction in the back emf causes more current to flow in the primary winding



#### Self-Regulation

Any increase in the secondary current flow results in a proportional increase in primary current flow

### **Load Increase Effects**

Secondary Load Increases

As the secondary load increases

**Primary Current Increases** 

This further reduces back emf and increases primary current flow



#### Secondary Current Increases

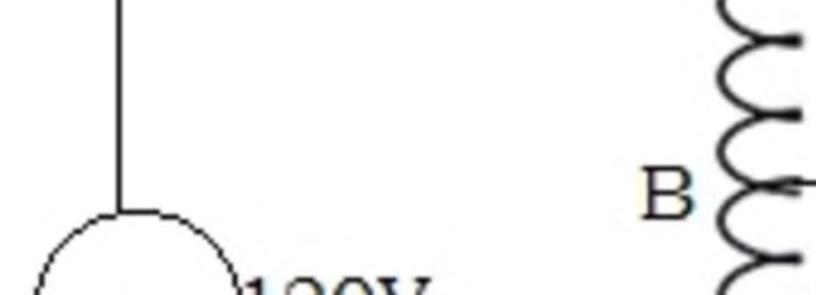
The current flow through the secondary winding increases

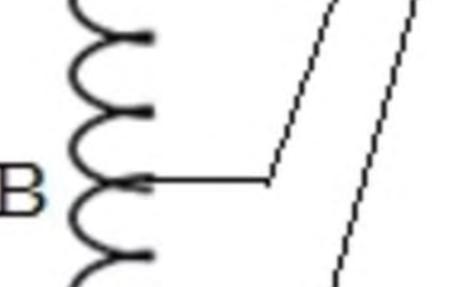
Secondary Field Strengthens

This increase in current strengthens the secondary field

#### Primary Field Weakens

The stronger secondary field further weakens the primary field


### Autotransformers


#### Definition

An autotransformer differs from the standard transformer in that it consists of a single coil, arranged as shown in Figure 6-3.

An autotransformer is a power transformer with one continuous winding, part of which serves as the primary winding and all of which serves as the secondary winding, or vice versa. Secondary voltages are supplied across any pair of a series of connections (taps).

Figure 6-3
Autotransformer connections





## **Autotransformer Characteristics**



#### No Electrical Isolation

An important thing to note is that there is no electrical isolation between the primary and secondary of an autotransformer



#### **Economic Advantage**

For this reason,
autotransformers are more
economical to manufacture than
other types



#### Safety Concern

For the same reason, they are also more vulnerable to catastrophic failure

## Transformer Applications in the Gas Industry

#### **Control Systems**

Transformers power control systems for gas equipment

#### **Ignition Systems**

Step-up transformers provide high voltage for spark ignition

#### Sensors and Monitoring

Low-voltage transformers power sensors and monitoring equipment

#### Safety Systems

Transformers provide power for safety shutoff systems



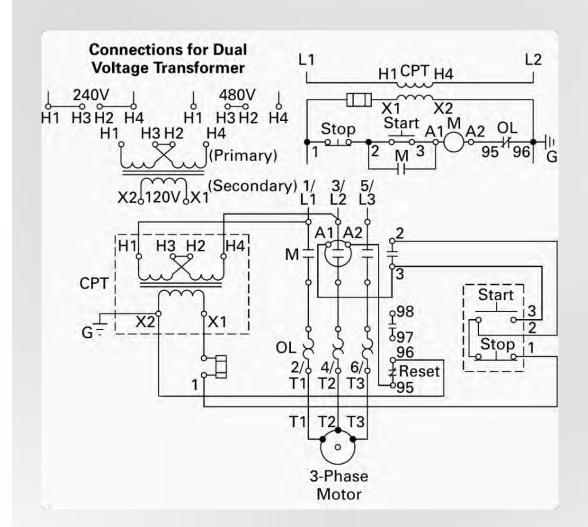
## Transformer Efficiency

95%

5%

Typical Efficiency

Modern transformers have very high efficiency ratings


Power Loss

Small percentage of power is lost as heat

60Hz

Standard Frequency

North American power system frequency



## **Transformer Cooling Methods**



Air-Cooled

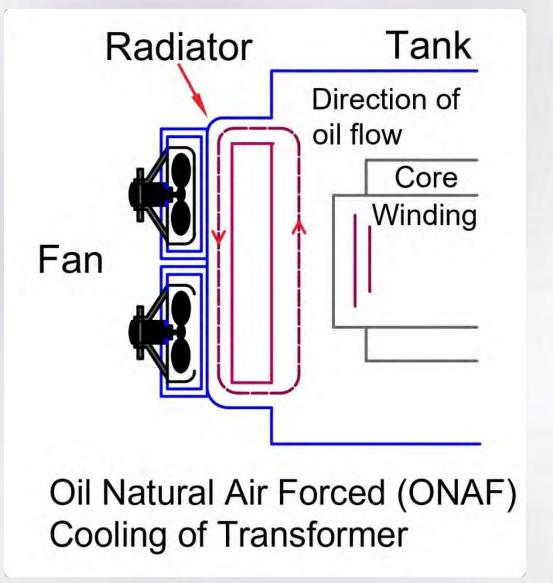


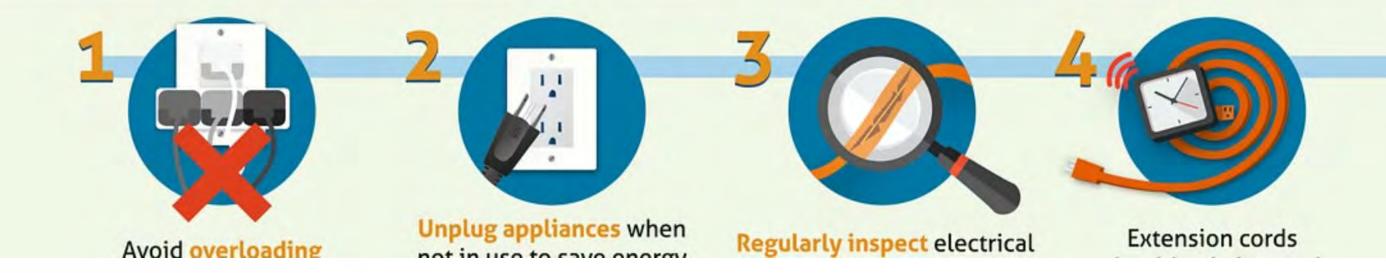
Forced-Air Cooled



Oil-Immersed

Small transformers use natural air circulation for


Medium-sized transformers use fans to enhance cooling


Larger transformers are immersed in oil for better heat dissipation



cooling

Very large transformers may use water cooling systems





## **Transformer Safety Considerations**

1 High Voltage Hazard

Transformers can produce lethal voltage levels



**Heat Generation** 

Transformers generate heat during operation and require adequate ventilation

Meavy Equipment

Large transformers are extremely heavy and require proper handling equipment



**Proper Grounding** 

All transformer installations must be properly grounded

## **Transformer Maintenance**

#### Visual Inspection

Regularly check for physical damage, leaks, or corrosion

#### Cleaning

Remove dust and debris that can impede cooling

#### **Connection Check**

Ensure all electrical connections are tight and free of corrosion

#### **Testing**

Periodically test insulation resistance and turns ratio



## Common Transformer Problems

#### Overheating

Can be caused by overloading, poor ventilation, or internal faults

#### **Insulation Breakdown**

Results from age, moisture, or excessive heat

#### **Core Saturation**

Occurs when operating above rated voltage

#### **Connection Issues**

Loose connections can cause arcing and heat damage





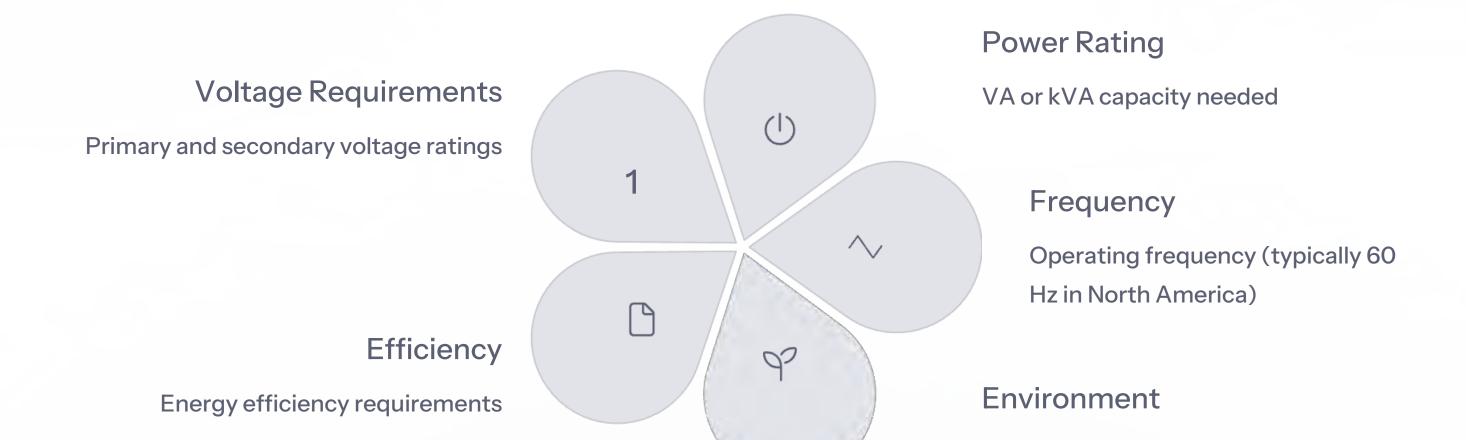
## **Transformer Troubleshooting**

Measure Input Voltage

Verify proper input voltage is present

**Check Output Voltage** 

Measure output voltage under no-load conditions


**Test Winding Resistance** 

Measure resistance of primary and secondary windings

Insulation Testing

Check insulation resistance between windings and to ground

## **Transformer Selection Criteria**



Indoor/outdoor, temperature, humidity

# Transformer Installation Best Practices



# **Proper Location**

Install in well-ventilated areas away from combustible materials



# **Secure Mounting**

Ensure transformer is securely mounted to prevent movement



# **Correct Wiring**

Follow manufacturer's wiring diagrams precisely



# **Proper Grounding**

Connect ground wire according to electrical code requirements

# 8 General Guidelines To Consider While Installing A Transformer

### **Bio link**

https://sites.google.com/site/shaktielectricalcorporation/blog/transformerinstallation-guidelines



Transformers play a very impressive role in a lot of industries. It is said that the manufacturing of a transformer is super difficult, but at the same time, the installation of the transformer is equally important. If the transformer installation is not done properly, then the operations will never be conducted smoothly by the transformer. There are a lot of steps that one needs to follow while installing a transformer and those guidelines are already fixed and mandatory to follow. Let's check out the steps in the guidelines, which have to

# Transformer Types by Application

### **Power Transformers**

Used in power generation, transmission, and distribution systems

### **Distribution Transformers**

Step down voltage for final distribution to consumers

### **Instrument Transformers**

Used for measurement in metering and protection systems

### **Control Transformers**

Provide voltage for control circuits in industrial applications

### **Dry Type Transformers**



**Padmount Transformers** 





### Benefits

- Advanced Design
- 4 High Efficiency Performance
- \$ Cost Effective
- **Q** Quiet Operation
- Can Extended Life
- **≅** Customizable

- Proven
- **S** Cost-Efficient
- **♥** Flexibility

# Environment

- ♠ Indoors
- ↑ Overhead/Side Connections
- Moderate Temperature & Humidity
- ≓ Clean Ambient Air
- Restricted Access
- Part of a Line-Up

- **Outdoors**
- Underground Connections
- All Weather Conditions
- A Sealed Tank Construction
- m Public Space
- ☐ Stand Alone



Ready to take the next step?

Contact us today for a quote.

**Request a Quote** 

# Transformer Protection Devices



**Fuses** 

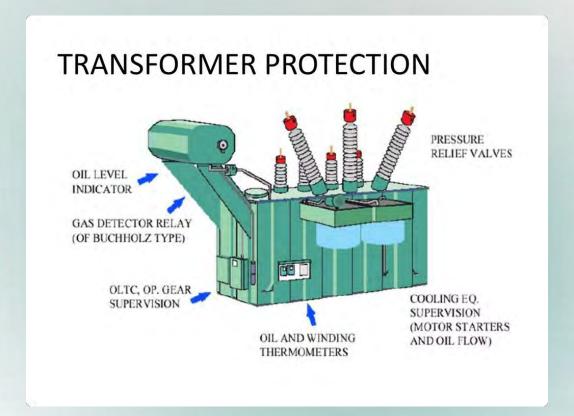
Protect against overcurrent conditions



**Circuit Breakers** 

Provide resettable overcurrent protection




**Thermal Protection** 

Monitors temperature and disconnects when overheating occurs



# Surge Arresters

Protect against voltage spikes and lightning



# Transformer Sizing for Gas Equipment

## Calculate Total Load

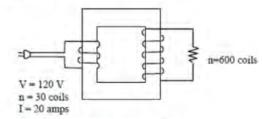
Add up the power requirements of all connected devices

# **Apply Safety Factor**

Multiply by 1.25 to allow for startup surges and future expansion

## Select Transformer

Choose a transformer with a VA rating equal to or greater than the calculated value


# Verify Voltage

Ensure primary and secondary voltage ratings match your requirements

| Name:     | Date:       |
|-----------|-------------|
| Physics I | Mr. Tiesler |

Transformer Worksheet

Solutions to Physics I Transformer Worksheet



1.) Fill in the table below for the transformer shown above.

$$\frac{V_S}{V_P} = \frac{N_S}{N_P}, \qquad V_S = \frac{N_S V_P}{N_P} = \frac{(600)(120 \, V)}{30} = 2400 \, V$$

$$\frac{I_S}{I_P} = \frac{N_P}{N_S}, \qquad I_S = \frac{N_P I_P}{N_S} = \frac{(30)(20 A)}{600} = 1 A$$

$$P_p = I_p V_p = (20 A)(120 V) = 2400 W$$

$$P_S = I_S V_S = (1 A)(2400 V) = 2400 W$$

|            | Primary | Secondary |
|------------|---------|-----------|
| Voltage    | 120 V   | 2400 V    |
| Current    | 20 A    | 1 A       |
| # of Coils | 30      | 600       |
| Power      | 2400 W  | 2400 W    |

2.) Is this a step up or step down transformer?

Step Up

# Transformer Efficiency Calculation

# **Efficiency Formula**

Efficiency (%) = (Output Power / Input Power) × 100

Output Power = Input Power - Losses

# **Losses in Transformers**

Core losses (hysteresis and eddy current losses)

Copper losses (I<sup>2</sup>R losses in the windings)

Stray losses (leakage flux, etc.)

# Transformer Ratings

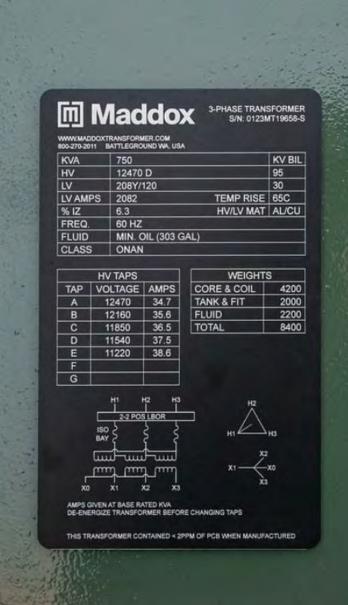


# **VA Rating**

The apparent power capacity of the transformer, measured in volt-amperes (VA) or kilovolt-amperes (kVA)



Primary and secondary voltage specifications




The frequency at which the transformer is designed to operate (typically 60 Hz in North America)



# Temperature Rating

Maximum allowable operating temperature



# Primary Windings VAC Input VAC Output

# **Transformer Core Materials**

### Silicon Steel

Most common core material, with good magnetic properties and low losses

# **Amorphous Metal**

Higher efficiency but more expensive, used in high-efficiency transformers

### **Ferrite**

Used in high-frequency applications

# Nickel-Iron Alloys

Used in special applications requiring high permeability

# **Transformer Winding Types**

# **Concentric Windings**

Primary and secondary windings are arranged in concentric cylinders, with one winding inside the other. This is the most common arrangement for power transformers.

# Sandwich Windings

Primary and secondary windings are interleaved in alternating layers. This arrangement provides better coupling and is often used in high-voltage transformers.





# **Transformer Insulation Materials**



Paper

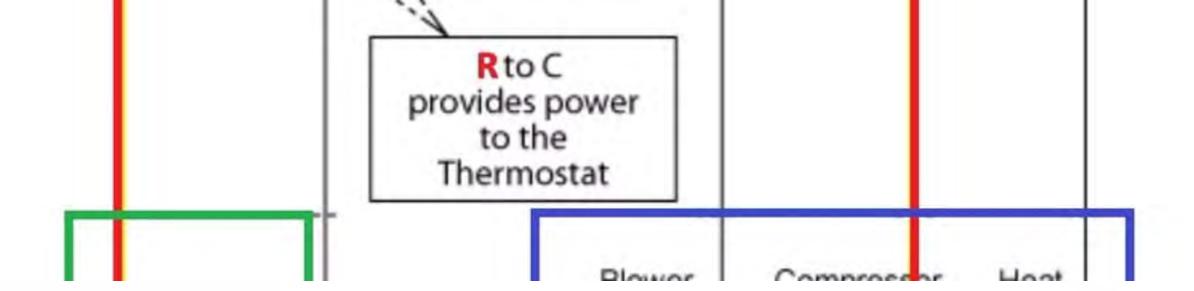
Traditional insulation material, often impregnated with oil



Mineral Oil

Provides both insulation and cooling




Synthetic Materials

Modern transformers use various synthetic insulation materials



Air/Gas

Dry-type
transformers use air
or other gases for
insulation



# **Transformer Connections**

## **Delta Connection**

Windings are connected in a triangle configuration

# Wye (Star) Connection

Windings are connected in a Y configuration with a common neutral point

# Open Delta

A three-phase connection using only two transformers

# **Zigzag Connection**

Special connection used for grounding and harmonic mitigation



# Transformer Testing Methods



Winding Resistance Test

Measures the DC resistance of each winding



**Turns Ratio Test** 

Verifies the ratio of primary to secondary turns



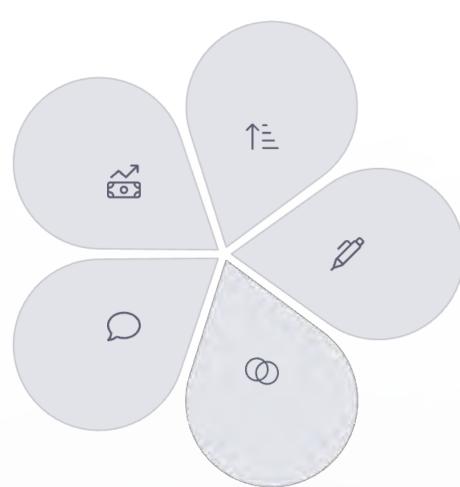
**Insulation Resistance Test** 

Measures the resistance between windings and to ground



Oil Quality Test

Analyzes oil for contaminants and breakdown products


# Transformer Failure Modes

# **Insulation Failure**

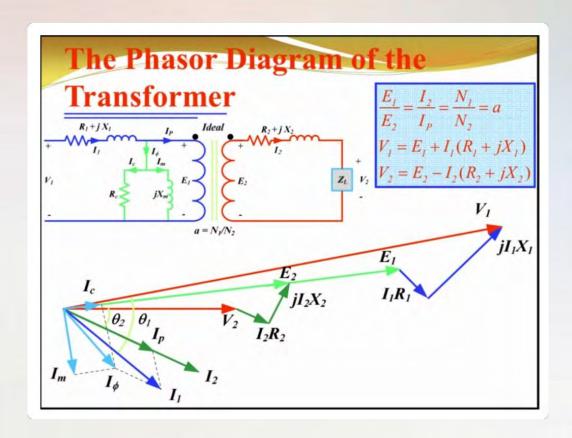
Most common failure mode, often due to aging or overheating

# Moisture Ingress

Water contamination reduces insulation effectiveness



# **Short Circuits**


Can occur between turns, windings, or to ground

## **Mechanical Failures**

Core or winding movement due to vibration or physical damage

## **Thermal Overload**

Excessive heat damages insulation and accelerates aging



# Transformer Life Expectancy

20-30

10°C

Years

Typical life expectancy of a wellmaintained transformer Temperature Rise

Each 10°C rise above rated temperature halves transformer life

2x

Maintenance Impact

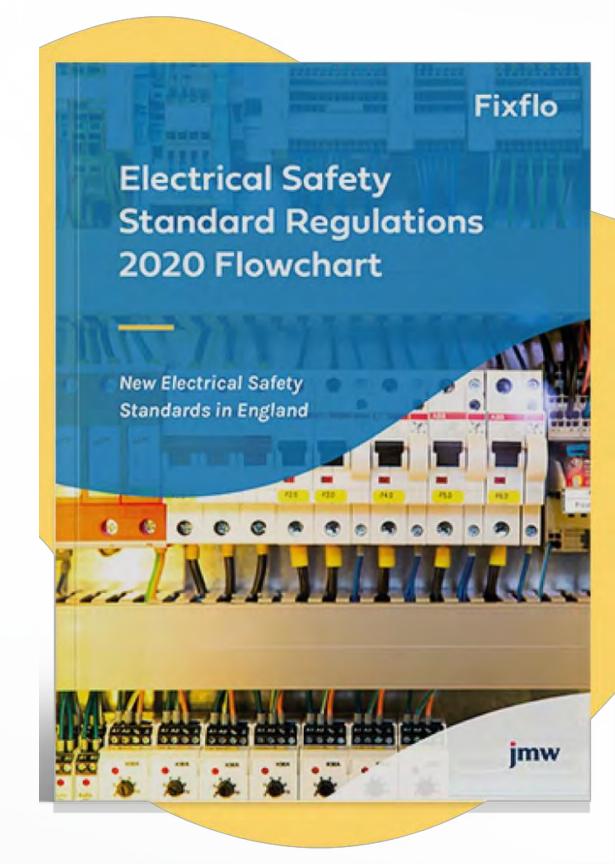
Regular maintenance can double the service life

# Transformer Standards and Regulations

IEEE C57

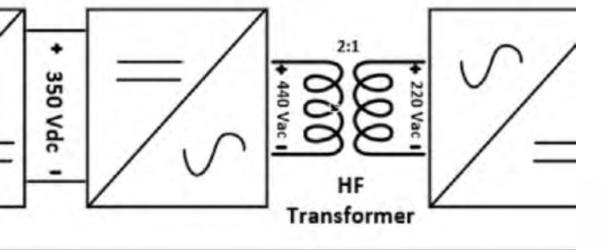
Standards for power and distribution transformers

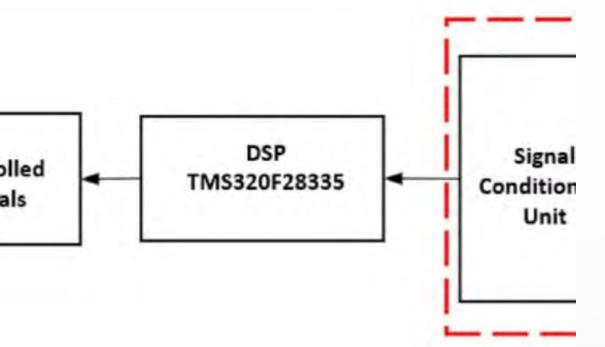
NEMA ST 20


Dry-type transformer standards

**CSA C22.2** 

Canadian standards for transformers


DOE 10 CFR Part 431


Energy efficiency standards for distribution transformers





# DAB (DC-AC-AC-DC)





# Future Trends in Transformer Technology



**Higher Efficiency** 

Advanced materials and designs for reduced losses



Smart Transformers

Integrated monitoring and communication capabilities



Eco-Friendly Materials

Biodegradable oils and recyclable components



**Compact Designs** 

Smaller footprint with higher power density



# Summary: AC Power Supplies and Transformer Theory



# **AC Power Basics**

120-volt AC circuits in residential applications use colorcoded wiring for safety and proper identification



### **Transformer Calculations**

Output voltage and current can be calculated using turns ratio and power conservation principles



# **Transformer Operation**

Transformers work through electromagnetic induction to transfer energy between circuits and change voltage levels



# **Safety Considerations**

Proper selection, installation, and maintenance of transformers is essential for safe and efficient operation



# CSA Unit 5

# Chapter 7 Electrical Measuring Instruments

The gas technician/fitter requires knowledge of electrical measuring instruments. It is important to understand how to safely use and interpret instrument readings to effectively troubleshoot the types of electrical equipment and circuits in the gas industry.

# **Learning Objectives**



**Identify and Select** 

Identify and select common electrical measuring instruments



Describe Usage

Describe how to use electrical measuring instruments



Read Measurements

Read electrical measuring instruments



# **Key Terminology**

| Term                      | Abbreviation (symbol) | Definition                                                                          |
|---------------------------|-----------------------|-------------------------------------------------------------------------------------|
| Digital multimeter        | DMM                   | Digital electronic measuring instrument that combines several functions in one Unit |
| Volt-ohm-<br>milliammeter | VOM                   | Electronic measuring instrument that combines several functions in one Unit         |









# Common Electrical Measuring Instruments

Voltmeter

Used to measure voltage

Ammeter

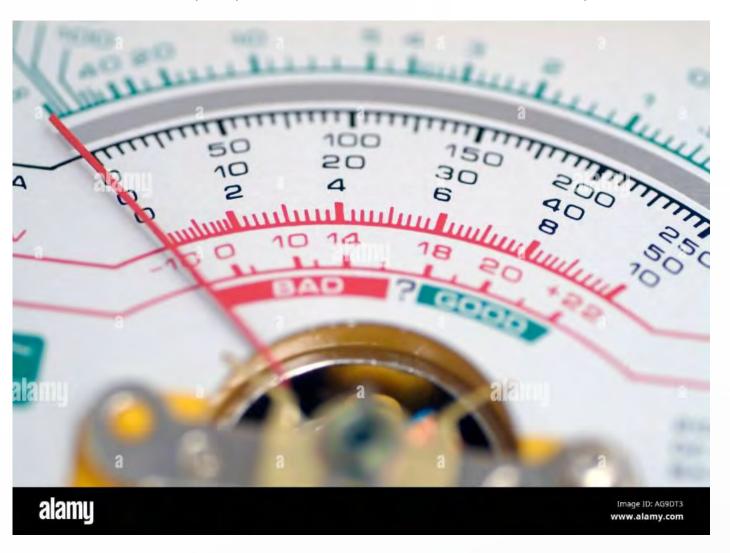
Used to measure current

Ohmmeter

Used to measure resistance and continuity



# Multimeters: The All-in-One Solution


The functions of each individual instrument can be combined into a single versatile instrument called multimeter. Multimeters are more commonly used in the field and are often known by other names such as volt-ohm-milliammeter (VOM) and digital multimeter (DMM). A multimeter saves having to purchase numerous individual meters.

# Analogue vs Digital Multimeters

### **Analogue Meters**

Consist of a needle-type pointer that moves across a fixed scale

Somewhat delicate and requires placement on a horizontal surface to retain accuracy



### **Digital Meters**

Display using liquid-crystal or light-emitting diodes (LED)

Often easier to read than analogue meters

Will retain their accuracy regardless of positioning



# Digital Multimeter Variations

Digital multimeters can vary greatly in their operation and functions.

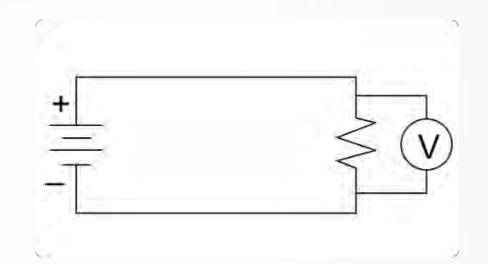
Most multimeters can measure both alternating current (ac) and direct current (dc), whereas some voltmeters and ammeters can measure only one type of current. Always refer to the instrument's operating instruction booklet before using it to confirm its safe and proper use.





# Measuring Voltage

## Connect in Parallel


To measure voltage, you must connect a voltmeter across the two points in the circuit where the voltage appears, or in other words, in parallel with the part of the circuit under test.

# Minimal Circuit Impact

It is very important that the addition of the voltmeter into a circuit has very little effect on the conditions normally existing in the circuit.

# High Internal Resistance

A voltmeter must have a very high internal resistance, so that operating the instrument will draw very little current from that circuit.



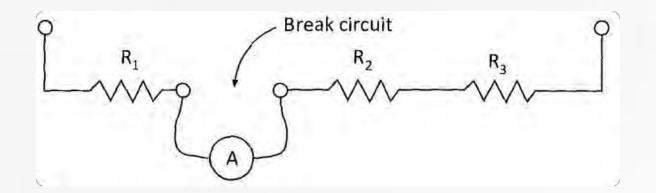
# Voltmeter Resistance Requirements



# **Maximum Accuracy**

For maximum accuracy, a voltmeter's internal resistance should be many times higher than any resistance encountered in the circuit under test.




# **Analogue Voltmeters**

Analogue voltmeters have internal resistances in the thousands of ohms.



# **Digital Voltmeters**

Digital instruments often have internal resistances in the millions of ohms.



# **Measuring Current**

# Break the Circuit

In order to measure current, break down the circuit at the point where you will measure the current.

# **Insert in Series**

Insert the ammeter in series with the circuit under test.

# Safety First

Before breaking any circuit to insert an ammeter, it is first necessary to switch the circuit off to avoid danger.

# **Ammeter Characteristics**



### Low Internal Resistance

The internal resistance of the ammeter is very low, normally a fraction of an ohm.



### **Avoid Incorrect Connections**

Due to the ammeter's low internal resistance, you must avoid connecting it across a load under test or the supply voltage itself.



## Potential Damage

Incorrect connection would cause high current to flow through the ammeter, seriously damaging the instrument and possibly harming the operator.



## **Protection Features**

Some ammeters come with a fuse or circuit-breaker for protecting the instrument, but you should never assume that this is adequate protection.

The circuit in the diagram consists of two resistors in series, with ammeters  $A_1$ ,  $A_2$ , and  $A_3$  placed at different points in the circuit.  $A_1$  reads  $A_2$ .

What is the current given by the second ammeter,  $A_2$ ?

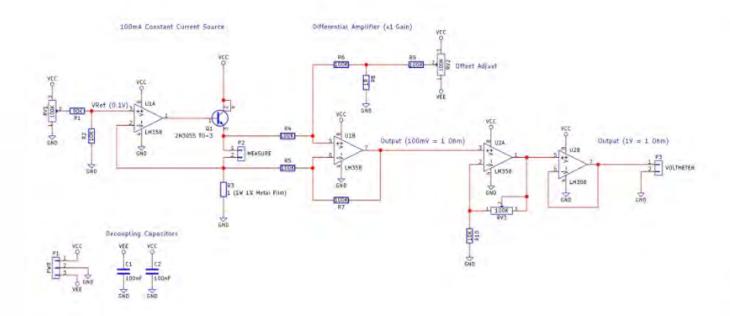
What is the current given by the third ammeter,  $A_3$ ?

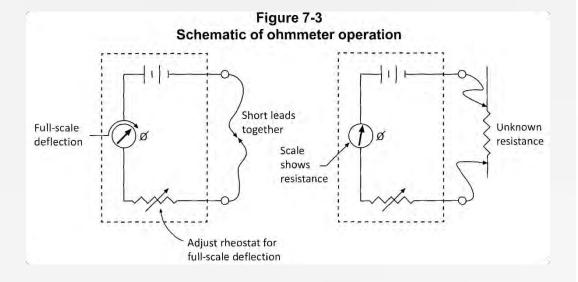
Series circuit: current is the same at all points (same number of charges per second passing each point)

current = charge per unit time

# **Understanding Ohm's Law**

Ohm's law tells us that, with a fixed value of voltage across a circuit, the value of current flowing depends upon the resistance of that circuit:


### **Higher Resistance**


The higher the resistance, the lower the current flow.

# **ELECTRICAL CIRCUIT** SWITCH SWITCH PARALLEL CIRCUIT SERIES CIRCUIT

### **Lower Resistance**

The lower the resistance, the higher the current flow.





# How an Ohmmeter Works



### Connect Test Leads

The test-leads are connected to the instrument's terminals and are first short-circuited together.



# Adjust Rheostat

Adjustment of rheostat occurs until the instrument registers full-scale deflection—this corresponds to zero ohms.

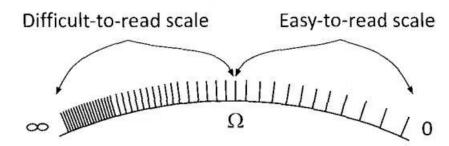


### **Test Circuit**

Now, the test-leads are connected to the circuit or component under test.



### Read Measurement


The resulting current through the ohmmeter will be lower than it was before, because of the added resistance, and the instrument's pointer will register somewhat less than full-scale deflection.

# Analogue Ohmmeter Scale

# Right to Left Reading

Unlike the voltmeter and the ammeter, the most noticeable thing about an analogue ohmmeter's scale is that you read it from right to left.

Figure 7-4
Non-linear, analogue ohmmeter scale



### Non-Linear Scale

The scale is non-linear. This means that the graduations that represent the higher values of resistance (to the left side of the scale) are very close together, while those representing lower values (to the right side of the scale) have wider spacings.



# Zero Ohms Adjustment

# Perform Before Use

Using the built-in rheostat to adjust for full-scale deflection is what you call zero ohms adjustment. You must perform it before using the ohmmeter to measure resistance.

# **Battery Compensation**

This compensates for any variation in the voltage of the instrument's battery.

# **Battery Check**

If you cannot achieve zero ohms adjustment, it means the battery is too weak and needs replacement.

# Ohmmeter Operating Precautions

## Do

- Always be aware of inadvertently measuring the resistance of other components that are connected in parallel with the component under test.
- You may have to physically remove the component from the circuit before performing the test.
- Always switch an ohmmeter off when measurements are completed.

# Do Not/Never

- Never connect an ohmmeter across a live load or the supply voltage itself.
- This would cause high current to flow through the ammeter, seriously damaging the instrument and possibly harming the operator!
- Never leave test-leads shorted together when the instrument is off, as the instrument's battery will very quickly discharge.

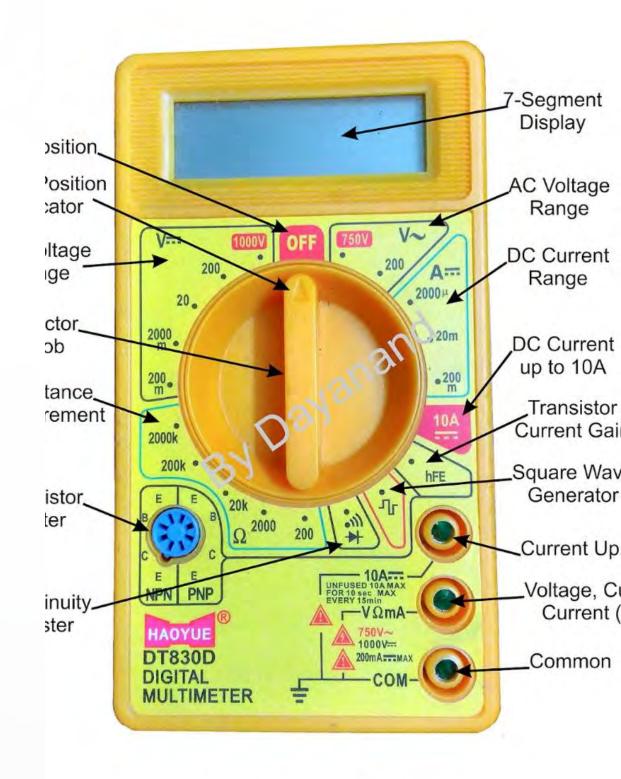
# **Checking Continuity**

Technicians/fitters very often use ohmmeters to check for continuity—to confirm, for example, that a circuit, or component, is not open-circuited. When checking continuity, the actual resistance of the circuit or component is unimportant—a simple deflection of the pointer confirms continuity.



# Variable Range Instruments

# **Extended Versatility**


In order to extend their versatility, most electrical measuring instruments have several ranges.

# Voltmeter Example

For example, you may adjust a voltmeter to read: 0 to 5 V, 0 to 10 V, 0 to 25 V, and 0 to 100 V.

# Multiple Scales

An analogue voltmeter may have four separate scales or only one scale (say, 0 to 5 V), in which case you must multiply its reading by factors of x2, x5, or x20, according to the selected range.



# Multimeter Settings

# Scale Selection Methods

### Analogue Instruments

The method for selecting the range on such an instrument varies from manufacturer to manufacturer, with the most common being a rotary knob that aligns with ranges engraved onto the case.



### **Digital Instruments**

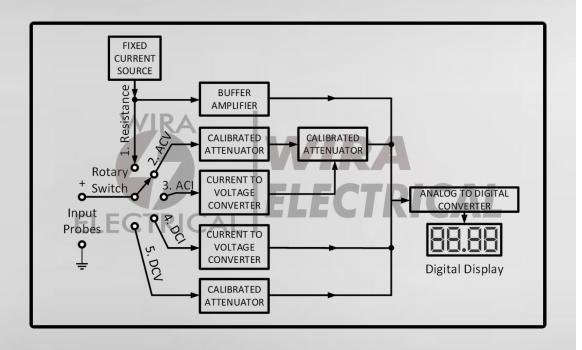
Modern digital instruments often select the appropriate range automatically.



# Range Selection Best Practices

# Start High

If you are unsure of the value of voltage or current that you are about to measure, always start with the highest range and work down until you achieve the greatest readable deflection of the pointer.


### **Estimate First**

Always estimate the likely value of voltage or current before performing the test, just in case it is beyond even the highest range of the instrument.

# Maximize Accuracy

For maximum accuracy with analogue instruments, always select the range that gives the greatest readable deflection because all instruments are calibrated to give maximum accuracy at full-scale deflection.





# Understanding Instrument Accuracy

For example, suppose a 100 V voltmeter is manufactured to an accuracy of  $\pm 5\%$ . This accuracy applies to the instrument's full-scale deflection. In other words, it is accurate to  $\pm 5$  V at its 100 V reading. So, when it indicates 100 V, the actual voltage could be anywhere between 95 V and 105 V. However, when the same instrument indicates, say, only 10 V, it is still accurate to  $\pm 5$  V, so the actual voltage could range from 5 V to 15 V!

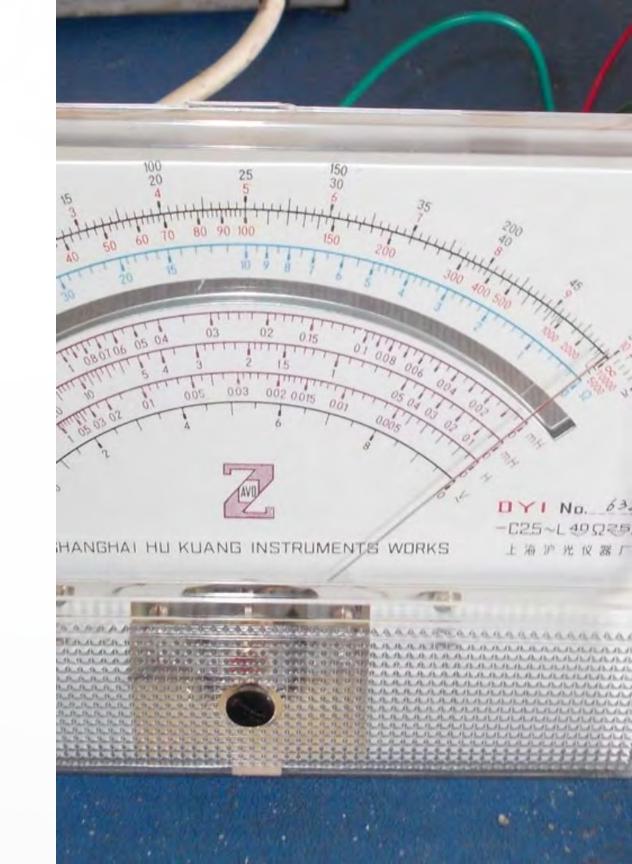
# Ohmmeter Range Adjustment



#### Adjust for Zero Ohms

In the case of an ohmmeter, you must adjust the instrument for zero ohms each time its range is changed.




#### Prepare Before Measurement

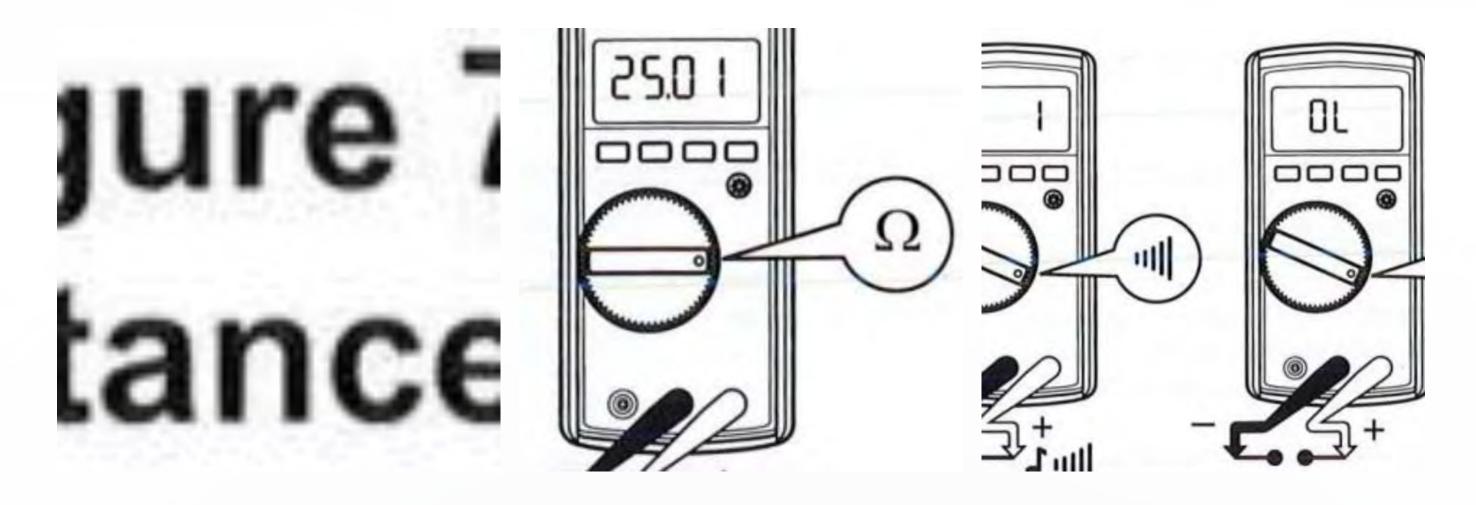
You must also adjust for zero ohms before you use the ohmmeter to take a measurement.



#### **Verify Battery Condition**

If zero adjustment cannot be achieved, check and replace the battery if necessary.






# Digital Multimeter (DMM) Overview

As discussed in Unit 2 Fasteners, Tools and Testing Instruments, Chapter 6. Electrical Testing Instruments, a digital multimeter has all the functions of an analogue multimeter plus advanced features. The primary difference to the technician/fitter is the way the user reads the data. DMMs have extended features depending on the make and model.

## Field Service Technician's Multimeter

The following illustrations from a user's manual give typical examples of taking measurements with a common digital multimeter.





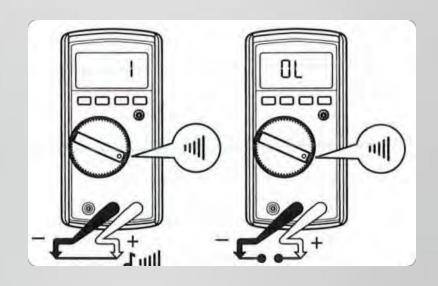
# Measuring Resistance Safely



Disconnect Power

To avoid electric shock, injury, or damage to the meter, disconnect circuit power before testing.




Discharge Capacitors

Discharge all highvoltage capacitors before testing resistance, continuity, diodes, or capacitance.

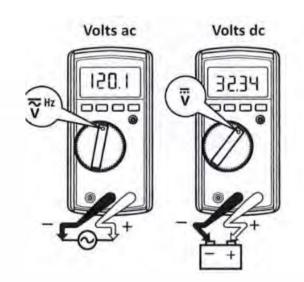


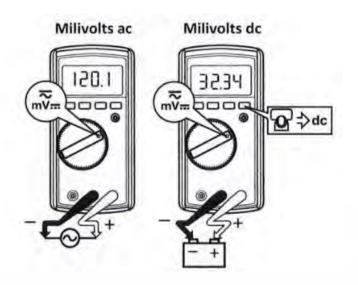
Follow Procedures

Always follow proper safety procedures when working with electrical circuits.



# **Testing for Continuity**


Note: The continuity function works best as a fast, convenient method to check for opens and shorts. For maximum accuracy in making resistance measurements, use the meter's resistance ( $\Omega$ ) function.


# Measuring AC and DC Voltage

#### **Using Auto Volts Selection**

With the function switch in the A~~~-V position, the meter automatically selects a dc or ac voltage measurement based on the input applied between the V or + and COM jacks.

This function also sets the meter's input impedance to approximately  $3k\Omega$  to reduce the possibility of false readings due to ghost voltages.









# Measuring AC and DC Millivolts

With the function switch in the m~V position, the meter measures ac plus dc millivolts. Press D to switch the meter to dc millivolts.

om ID 331541

# Measuring AC or DC Current



#### Safety Warnings



#### **Proper Setup**

To avoid personal injury or damage to the meter:

- Never attempt to make an in-circuit current measurement when the open-circuit potential to earth is >600V.
- Check the meter's fuse before testing.

Use the proper terminals, switch position, and range for your measurement.





#### **Avoid Parallel Connections**

Never place the probes in parallel with a circuit or component when the leads are plugged into the A (amps) terminals.

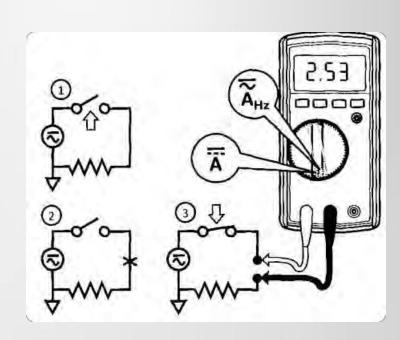


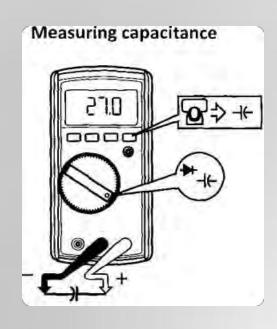
# Current Measurement Procedure

#### Power Off

Turn circuit power off before beginning.

#### **Break Circuit**


Break the circuit at the point where you want to measure current.

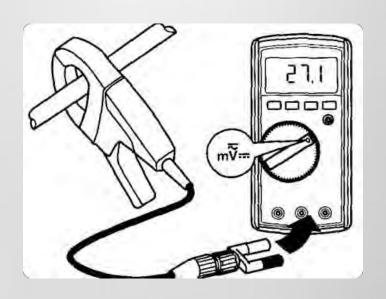

#### **Insert Meter**

Insert the meter in series with the circuit.

#### Power On

Turn circuit power on to take the measurement.






# Measuring Current Above 10 Amps

The millivolt and voltage function of the meter can be used with an optional mV/A output current probe to measure currents that exceed the rating of the meter. Make sure the meter has the correct function selected, ac or dc, for your current probe. Refer to a catalog or contact a representative for compatible current clamps.

# Measuring Capacitance

Digital multimeters can also measure capacitance, which is the ability of a component to store an electrical charge. This is useful when testing capacitors in electrical circuits.



## Multimeter Safety Guidelines

#### Inspect Before Use

Always inspect the multimeter, test leads, and accessories for damage before use. Do not use if damage is visible.

#### **Verify Operation**

Test the meter on a known live circuit to verify it's working properly before taking measurements.

#### **Use Proper Category Rating**

Ensure your meter has the appropriate category rating (CAT) for the environment you're working in.

#### Follow Manufacturer Instructions

Always read and follow the specific instructions provided by the manufacturer for your model.



Company Company

Company A

#### **HEALTH AND SAFETY GUIDELINES**

[Date]

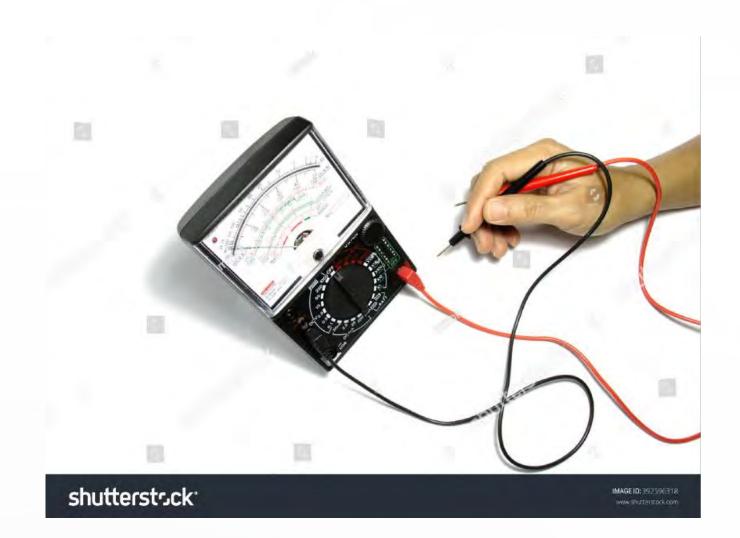
#### uction

any Name], the well-being of our employees is paramount. These Heal uidelines are designed to provide a safe and healthy work environment nbers. It is essential that every employee understands and follows these s to ensure a secure workplace.

#### al Health and Safety Measures

Last Revision: [Date]

Officer: [Name]


t Information: [Email Address] [Phone Number]

# **Proper Hand Positioning**

#### **Correct Technique**

When using a multimeter, keep your fingers behind the finger guards on the test probes.

This helps prevent accidental contact with live circuits and reduces the risk of electrical shock.



# Selecting the Right Multimeter

#### **Identify Requirements**

Determine what measurements you'll need to take most frequently

#### Purchase and Test

Buy from a reputable source and test functionality



#### Research Options

Compare features, specifications, and price points

#### **Verify Specifications**

Ensure the meter meets your accuracy and safety requirements



## Multimeter Maintenance



#### **Battery Replacement**

Replace batteries when low battery indicators appear to ensure accurate readings.



#### **Test Lead Inspection**

Regularly check test leads for wear, damage, or loose connections.



#### Regular Cleaning

Keep the meter clean and free of dust, especially the terminals and display.



#### Calibration

Have the meter calibrated according to manufacturer recommendations to maintain accuracy.

# Common Multimeter Symbols



V

Voltage (Volts)



Δ

Current (Amperes)



Ω

Resistance (Ohms)



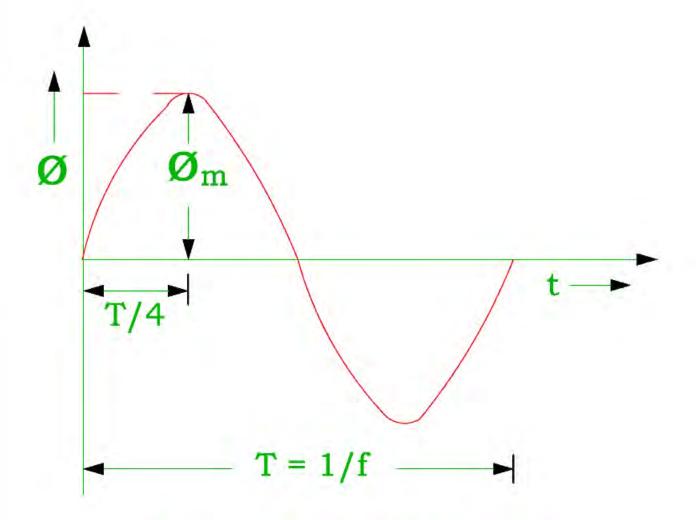
 $\overline{\Lambda}$ 

**Diode Test** 



))))

**Continuity Test** 

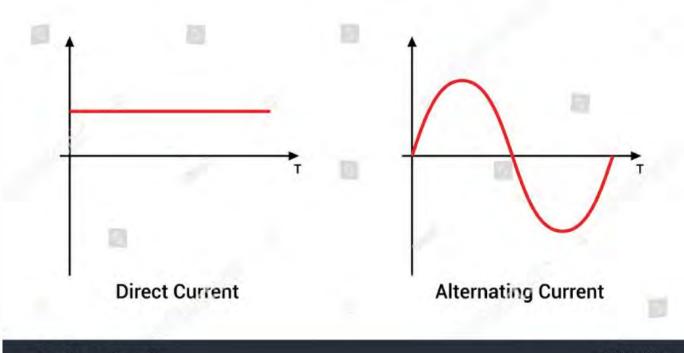

#### AC vs DC Measurement

#### AC (Alternating Current)

Typically indicated by ~ symbol

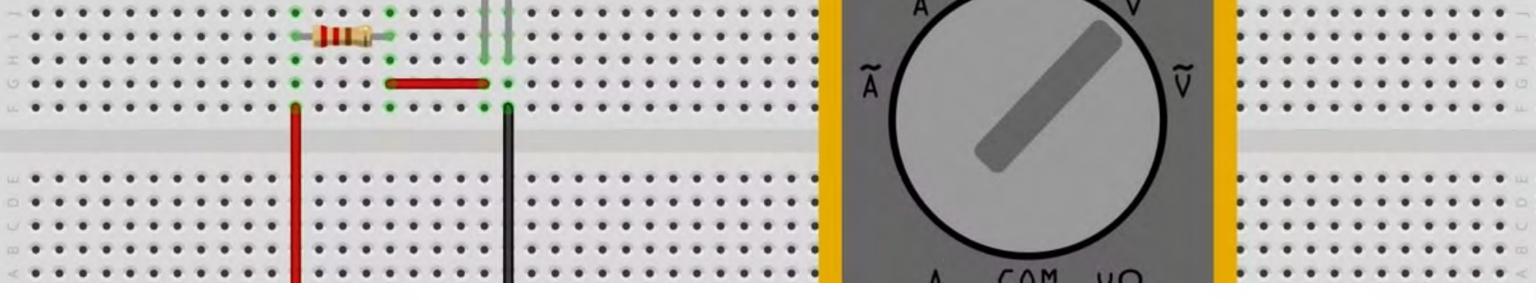
Used for household power, most appliances

Current periodically reverses direction




#### DC (Direct Current)

Typically indicated by -- symbol


Used in batteries, electronics, automotive

Current flows in one direction only



shutterstrick\*

IMAGE ID: 1962230392



# Measuring Voltage in Gas Appliances

#### **Identify Test Points**

Locate the appropriate terminals or connections on the gas appliance control board.

#### **Set Multimeter**

Select the appropriate voltage range and AC or DC setting based on the appliance specifications.

#### **Connect Probes**

Connect the probes to the test points, ensuring proper polarity for DC measurements.

#### Read and Interpret

Compare the reading to the manufacturer's specifications to determine if the voltage is within acceptable range.



# Testing Gas Valve Solenoids

#### **Resistance Testing**

Use the ohmmeter function to measure the resistance of the solenoid coil. Compare with manufacturer specifications to determine if the solenoid is functioning properly.

#### **Continuity Check**

Use the continuity function to verify there are no breaks in the solenoid circuit. A continuous circuit should produce a beep or indication on the meter.

#### **Voltage Verification**

With the system running, use the voltmeter function to confirm the solenoid is receiving the correct voltage when activated.

# Troubleshooting Ignition Systems



#### **Check Power Supply**

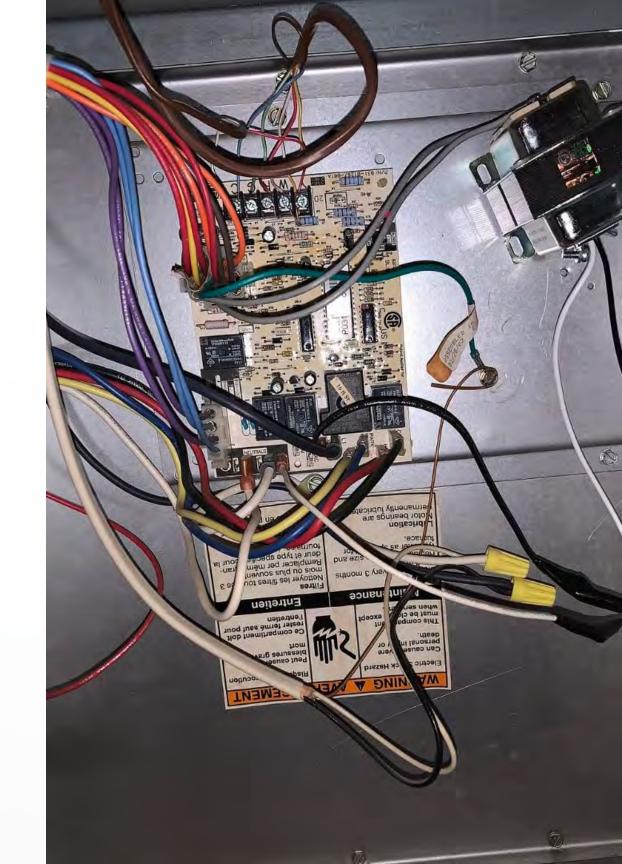
Verify proper voltage to the ignition control module



#### Test Igniter

Measure resistance of igniter or spark electrode




#### Verify Flame Sensor

Check flame sensor circuit for proper microamp reading



#### **Inspect Wiring**

Test for continuity in all wiring connections



# Measuring Thermocouple Output

Thermocouples are safety devices used in gas appliances to verify the presence of a pilot flame. A properly functioning thermocouple should generate a small DC voltage (typically 25-30 millivolts) when heated by the pilot flame.

#### Set Multimeter

Set the multimeter to DC millivolts (mV) range.

#### **Connect Probes**

Connect the negative probe to the thermocouple sheath and the positive probe to the copper lead.

#### Heat Thermocouple

With the pilot lit and heating the thermocouple, take the reading.

#### Interpret Results

A reading below 20mV typically indicates a failing thermocouple that should be replaced.

# Thermoelectric voltage in mV Thermoelectric voltage in mV 0 0.000 0.039 0.079 0.119 0.158 0.198 0.238 0.277 0.317 0.357 0.397 10 0.397 0.437 0.477 0.517 0.557 0.597 0.637 0.677 0.718 0.758 0.798 20 0.798 0.838 0.879 0.919 0.960 1.000\*\*1.041 1.081 1.122 1.163 1.203 30 1.203 1.244 1.285 1.326 1.366\*\*1.407 1.448\*\*1.489 1.530 1.571 1.612 40 1.612 1.653 1.694 1.735 1.776 1.817\*\*1.858 1.899 1.941 1.982 2.023 50 2.023 2.064 2.106 2.147 2.188 2.230 2.271 2.312 2.354 2.395 2.436 60 2.436 2.478 2.519 2.561 2.602 2.644 2.685 2.727 2.768 2.810 2.851 70 2.851 2.893 2.934 2.976 3.017 3.059 3.100 3.142 3.184 3.225 3.267 80 3.267 3.308 3.350 3.391 3.433 3.474 3.516 3.557 3.599 3.640 3.682 90 3.682 3.723 3.765 3.806 3.848 3.889 3.931 3.972 4.013 4.055 4.096

# **Testing Pressure Switches**

#### **Function**

Pressure switches in gas appliances verify proper venting and air flow before allowing gas valve operation.

They are normally open (NO) switches that close when proper pressure differential is detected.

#### **Testing Method**

Set multimeter to continuity or resistance mode.

Connect probes to the pressure switch terminals.

With the system running and proper pressure applied, the switch should show continuity (closed circuit).

Without proper pressure, the switch should show no continuity (open circuit).

# **Checking Fan Motor Circuits**



Measure voltage at the motor terminals to confirm proper supply voltage.

Test Motor Windings

Measure resistance of motor windings to check for opens or shorts.

Check Capacitor

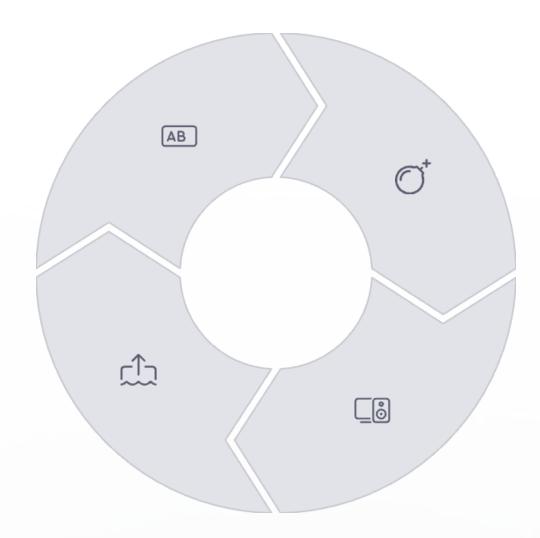
Test capacitor using the capacitance function of the multimeter.

Measure Running Current

Use clamp meter or ammeter function to verify motor is drawing proper current.

# **Back Panel** TERMINAL CONNECTION **JRCE**

**Load Harmonic Te** 


# Diagnosing Control Board Issues

#### **Check Input Voltage**

Verify proper voltage is reaching the control board

#### **Inspect Ground Connections**

Test continuity of ground connections to ensure proper grounding



#### **Test Fuses/Circuit Protection**

Check continuity of fuses and circuit protection devices

#### **Verify Output Signals**

Measure voltage at output terminals during operation sequence



# Measuring Flame Rectification Current

Modern gas appliances often use flame rectification to verify flame presence. This system produces a small DC current (typically 2-10 microamps) when a flame is present.

#### Set Multimeter

Set the multimeter to DC microamps ( $\mu$ A) range.

#### **Break Circuit**

Disconnect one wire from the flame sensor and connect the multimeter in series.

#### **Operate System**

Start the appliance and allow it to ignite.

#### **Read Current**

A stable flame should produce a reading of at least 2 microamps. Lower readings indicate a problem with the flame sensor or grounding.

## **Testing Limit Switches**

#### **Function**

Limit switches are safety devices that open when temperature exceeds safe levels, shutting down the heating system.

#### **Normal Operation**

Under normal temperature conditions, limit switches should show continuity (closed circuit).

#### **Testing Method**

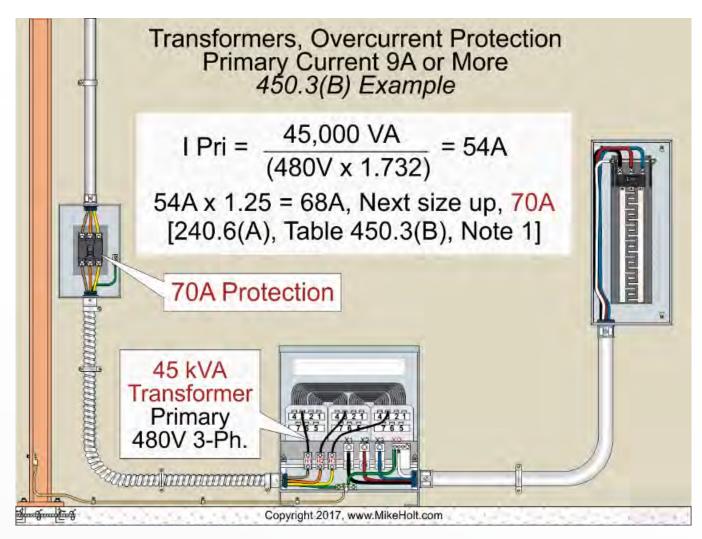
Set multimeter to continuity or resistance mode and connect probes to the switch terminals. A reading of near zero ohms indicates a properly functioning switch.

#### Troubleshooting

If a limit switch shows no continuity at normal temperatures, it may be defective or may have tripped due to overheating conditions that need to be addressed.



## **Checking Transformer Output**


#### **Primary Side**

Set multimeter to AC voltage and measure across the primary terminals of the transformer. This should match the input voltage (typically 120V or 240V).



#### Secondary Side

Set multimeter to AC voltage and measure across the secondary terminals. This should match the expected output voltage (typically 24V for control circuits in gas appliances).





# Verifying Proper Grounding



#### **Importance**

Proper grounding is essential for both safety and correct operation of electronic control systems in gas appliances.



#### **Testing Method**

Set multimeter to continuity or resistance mode and check for continuity between the ground terminal and the appliance chassis.



#### Voltage Check

Set multimeter to AC voltage and measure between the neutral wire and ground. A properly grounded system should show very low voltage (less than 2V).



#### **Resistance Verification**

The resistance between the ground terminal and chassis should be very low (less than 1 ohm).

# \_\_Daue

#### DLTAGE LOAD CALCULATOR & TRANSFORMER SELE

|                |   | 1                                    |                         |                        | 1    |
|----------------|---|--------------------------------------|-------------------------|------------------------|------|
| Wiring Details |   |                                      | Voltage Drop Calcul     |                        |      |
| o<br>Je        |   | Total Lamp<br>Wattage on<br>Wire Run | Amp Load on<br>Wire Run | Length (ft)<br>of Wire | Fixt |
|                | 0 |                                      |                         |                        |      |
|                | 0 |                                      |                         |                        |      |
|                | 0 |                                      |                         |                        |      |
|                | 0 |                                      |                         |                        |      |
|                | 0 |                                      |                         |                        |      |
|                | 0 |                                      |                         |                        |      |
|                | 0 |                                      | 10                      |                        |      |
|                | 0 |                                      |                         |                        |      |
|                | 0 |                                      |                         |                        |      |
|                | 0 |                                      |                         |                        |      |
|                | 0 |                                      |                         |                        |      |
|                | 0 |                                      |                         |                        |      |
|                | 0 |                                      |                         |                        |      |
|                | 0 |                                      |                         |                        |      |
|                | 0 |                                      |                         |                        |      |
|                | 0 |                                      |                         |                        |      |
|                | 0 |                                      |                         |                        |      |
|                | 0 |                                      |                         |                        |      |
|                | 0 |                                      |                         |                        |      |
|                | 0 |                                      |                         |                        |      |

# Measuring Voltage Drop

Voltage drop testing can help identify poor connections or excessive resistance in circuits that may cause operational issues.

#### Set Multimeter

Set the multimeter to DC voltage for DC circuits or AC voltage for AC circuits.

#### **Connect Probes**

Connect the probes across the component or wire section being tested.

#### **Operate Circuit**

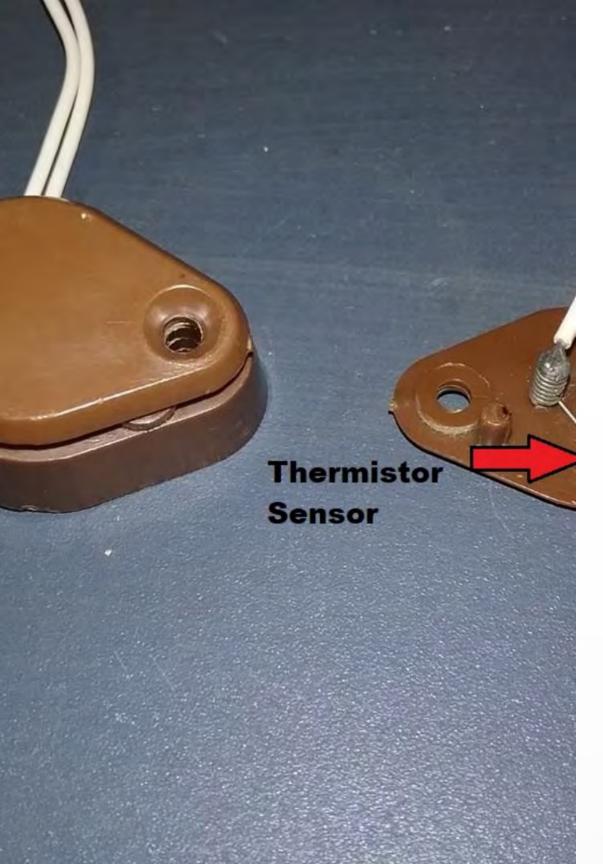
Ensure the circuit is operating and current is flowing.

#### **Interpret Results**

A significant voltage drop across a connection or wire indicates excessive resistance that should be addressed.

# **Testing Relay Circuits**

#### **Coil Testing**


Set multimeter to resistance mode and measure across the relay coil terminals. The reading should match the manufacturer's specifications (typically a few hundred ohms).

Alternatively, set to DC voltage and verify the coil is receiving the correct voltage when activated.

#### **Contact Testing**

Set multimeter to continuity mode and check the relay contacts in both energized and de-energized states:

- Normally open (NO) contacts should show no continuity when de-energized and continuity when energized
- Normally closed (NC) contacts should show continuity when de-energized and no continuity when energized



# **Checking Thermistor Sensors**

Thermistors are temperature sensors used in modern gas appliances to monitor various temperatures. Most are negative temperature coefficient (NTC) type, meaning their resistance decreases as temperature increases.

#### **Resistance Testing**

Set multimeter to resistance mode and measure across the thermistor terminals. Compare the reading to the manufacturer's temperature/resistance chart.

#### **Temperature Correlation**

Measure the actual temperature at the sensor location and verify the resistance reading corresponds to that temperature according to specifications.

#### **Circuit Verification**

Check for proper voltage supply to the sensor circuit and verify the control board is receiving the sensor signal.



## Diagnosing Intermittent Issues



#### **Monitor Over Time**

Use a multimeter with min/max recording capability to capture fluctuations



#### **Check Under Vibration**

Test connections while gently flexing wires to identify loose connections



#### Test at Different Temperatures

Monitor circuit behavior as components heat up during operation



#### Verify Under Load

Test circuit performance when the system is under full operational load

## Measuring Insulation Resistance

For testing high-resistance insulation in motors and wiring, a specialized insulation tester (megohmmeter) is often required, as standard multimeters cannot measure very high resistance values accurately.



#### Safety First

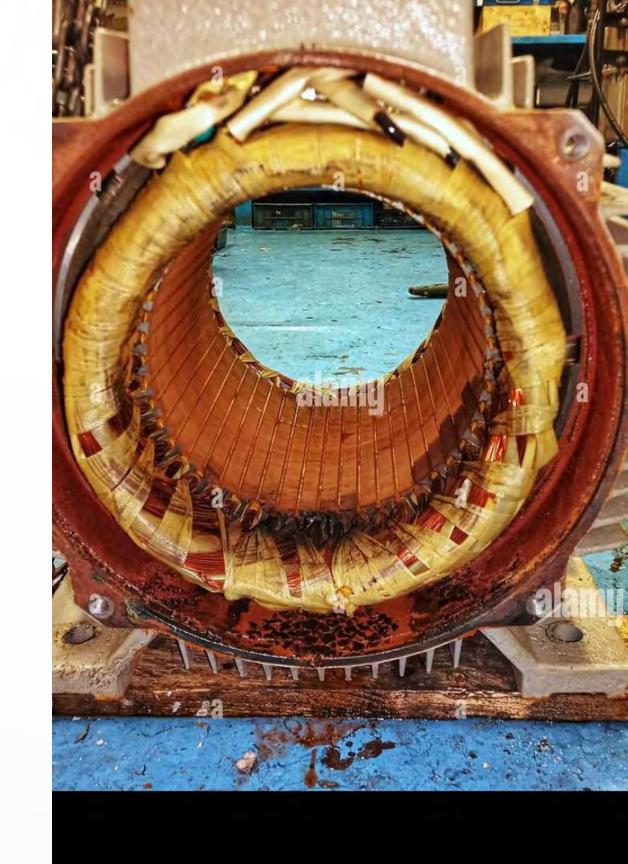
Always disconnect power and discharge capacitors before testing insulation resistance.



#### Specialized Equipment

Use a proper insulation resistance tester (megohmmeter) for this test.




#### **Testing Method**

Connect one lead to the conductor and the other to ground, then apply the test voltage and read the resistance value.



#### Interpretation

Good insulation typically shows resistance in the megohm range. Low readings indicate insulation breakdown.



# **Testing Capacitors**

#### Discharge First

Always discharge capacitors before testing by shorting the terminals with an insulated resistor.

#### Set Multimeter

Set the multimeter to capacitance mode if available.

#### **Connect Probes**

Connect the probes to the capacitor terminals, observing polarity for polarized capacitors.

#### Read Value

Compare the measured value to the rated capacitance. It should be within the tolerance specified (typically  $\pm 10\%$ ).

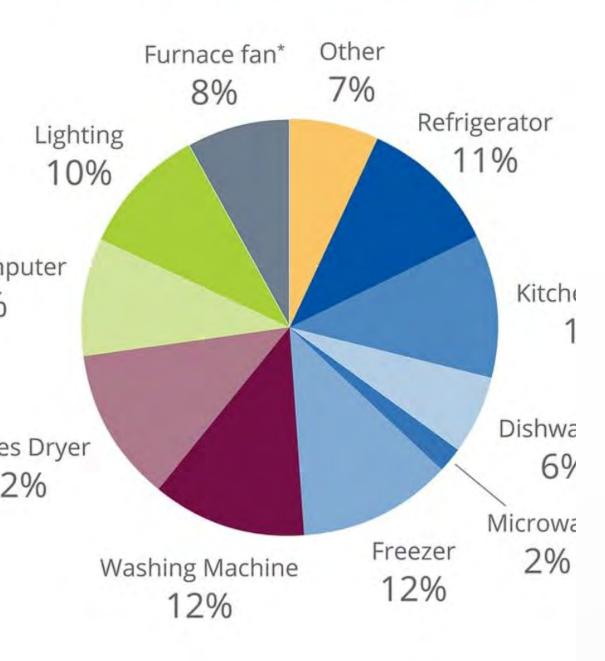


# Checking for Voltage Leakage

Voltage leakage can occur when insulation breaks down or when moisture creates conductive paths between circuits.

#### **Testing Method**

Set multimeter to the highest DC or AC voltage range.


Connect one probe to the suspected leakage source and the other to ground or another circuit.

Any significant voltage reading indicates leakage that should be addressed.

#### **Common Causes**

- Damaged wire insulation
- Moisture or corrosion on circuit boards
- Failed component insulation
- Improper grounding

### L ALBERTA HOME ELECTRICAL CONSU



# Measuring Power Consumption

Understanding the power consumption of gas appliances can help diagnose efficiency issues and verify proper operation.

#### Voltage Measurement

Measure the voltage across the power supply terminals.

#### **Current Measurement**

Measure the current draw using the ammeter function or a clamp meter.

#### Calculate Power

For DC circuits: Power (watts) = Voltage × Current

For AC circuits: Power (watts) = Voltage × Current × Power Factor

#### Compare to Specifications

Compare the calculated power consumption to the manufacturer's specifications.



#### **Advanced Multimeter Features**



#### Frequency Measurement

Measures the frequency of AC signals, useful for testing control circuits.



#### Temperature Probe

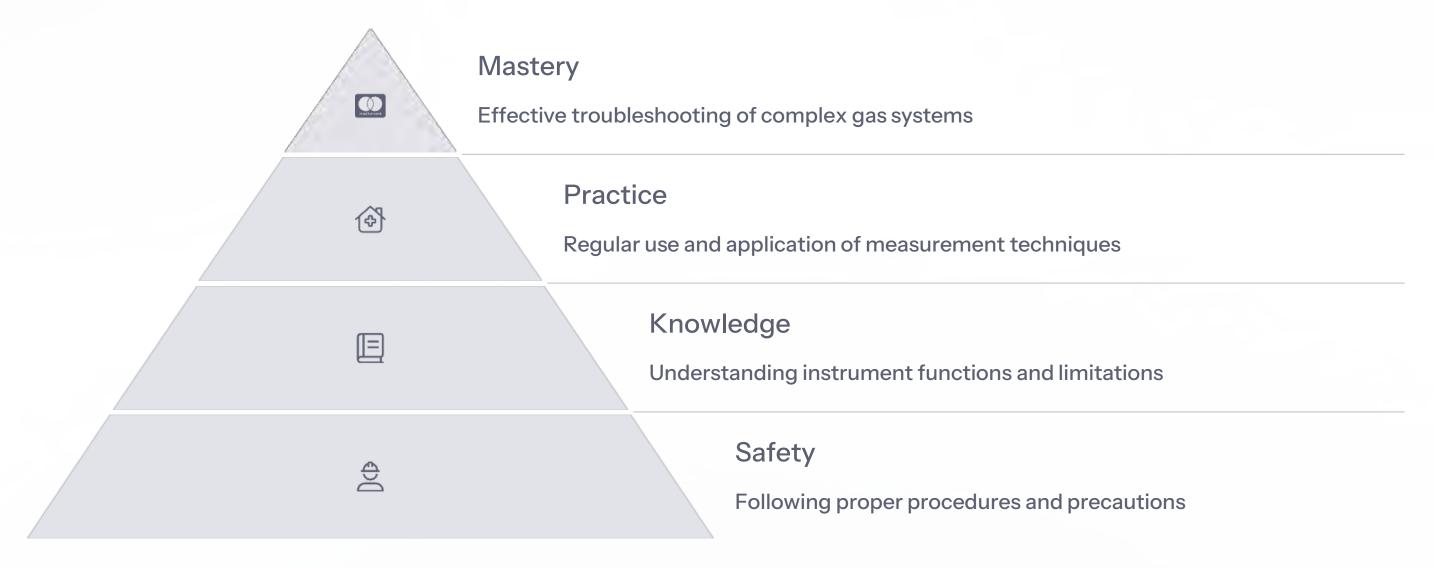
Many DMMs can measure temperature with an appropriate thermocouple probe.



#### **Data Logging**

Records measurements over time to help diagnose intermittent issues.




#### Wireless Connectivity

Some modern DMMs can connect to smartphones or computers for data analysis.

# Multimeter Accuracy Specifications

| Measurement Type | Typical Basic Accuracy | Factors Affecting Accuracy      |
|------------------|------------------------|---------------------------------|
| DC Voltage       | ±(0.5% + 2 digits)     | Input impedance, temperature    |
| AC Voltage       | ±(1.0% + 3 digits)     | Frequency response, waveform    |
| DC Current       | ±(1.0% + 2 digits)     | Temperature, fuse resistance    |
| AC Current       | ±(1.5% + 3 digits)     | Frequency response, waveform    |
| Resistance       | ±(0.8% + 2 digits)     | Contact resistance, temperature |

# Summary: Electrical Measuring Instruments



Gas technicians and fitters must develop proficiency with electrical measuring instruments to effectively diagnose and repair modern gas appliances. By understanding how to select the appropriate instrument, use it correctly, and interpret readings accurately, technicians can ensure safe and efficient operation of gas equipment.